
www.manaraa.com



www.manaraa.com

DUDLEY KNOX ^^^BAB^

MOKTEBEY, CAU^Oi-uiaA aoW-O



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
TECHNOLOGY UPGRADE OF A SILICON COMPILER

by

Eva G. Malagon

June 1987

Thesis Advisor D. Kirk

Approved for public release; distribution is unlimited.

T 233608



www.manaraa.com



www.manaraa.com

SKuWirv CiASSifiCATiON Of Tmi? page

REPORT DOCUMENTATION PAGE
Id REPORT SECURITY CLASSlflCATlON

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

2» SECURITY CLASSlflCATlON AUTHORITY

^b OECLASSifiCATiON/ DOWNGRADING SCHEDULE

) OiSTRlSUTlON/ AVAILABILITY Of REPORT

Approved for public release;
distribution is unliniited.

a PERfORMiNG ORGANIZATION REPORT NUW9£R(S) S MONITORING ORGANISATION REPORT NUV8ER(S)

64 NAME Of PERfORMiNG ORGANIZATION

Naval Postgraduate Schoo 1

6b OffiCE Si^MBOL
(If ipplntblf)

62

7* NAME Of MONITORING ORGANIZATION

Naval Postgraduate School
6< ADDRESS (Cry Stttt. snd/iPCodr)

Monterey, California 93943-5000

7b ADDRESS (C/ty StJf*. »nd iil> Codt)

Monterey, California 93943-5000

84 NAME Of fUNOiNG/ SPONSORING
ORGANIZATION

8b OffiCE SYMBOL
(H tppli(tbl9)

9 PROCUREMENT INSTRUMENT lOEN Tif iCATlON NUMBER

8c ADDRESS (C-ry, Sf4fe.#nd //*>Cod#J 10 SOURCE Of fUNOiNG NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

rAS<
NO

WORK JNIT
ACCESSION NO

'1 t.tlE (Include Se<ufiry CUuifiation)

TECHNOLOGY UPGRADE OF A SILICON COMPILER

PfRSONAi. AuThOR(S)

Malaaon. Eva G
tj T^Pf Of PfPORT

M;:|c;f pr ' c; Thf^Q-J C

io TME COVERED
fHQM TO

14 DATE Of REPORT (Yur Month Oiy)

1987 June
IS PA(,{ fQi^NT

119
'6 SUPPLEMENTARY NOTATION

COSATi COOES
f £iO GROUP SUB GROUP

18 Subject terms {Continut on rfvent if ntceutry *nd ideritify by blO(k number)

silicon compilation, vlsi design,
integrated circuit design, NMOS , SCMOS

9 ABSTRACT (Continut on rt^tn* if nfccu^ry tnd identity by blo<k nutnbtr)

A 1. 5 micron dual layer metal scaleable CMOS standard cell library
is inserted into the NMOS based silicon compiler, MacPitts. The MacPitts
data-path consisting of a collection of registers and arithmetic/logic
units (organelles) and sequenced by a three phase clock was modified to

accept two phase clocking and SCMOS organelles.

S'R'3UTiON ' AVAILABILITY Of ABSTRACT

CSI^-^CLASS^f'EO'UNLMlTED Q SAME AS RPT D OTiC USERS

2\ ABSTRACT SECURITY CLASSif iCA TiON

unclassified
iU NAME Of RESPONSIBLE 'NDiViOUAl

Kirk, D.
ZZb TELEPHONE f(n</u<y» Art* Cod*)

408-646-3905
i2t OfUCE SYMBOL

6 2KI

)OFORM 1473. 84 MAR 83 APR f d'tion rvtf b« uied until ««h«vjtted

All Oth«r editiont «rt Obtolct*
SECURITY CLASSlflCATlON Of ThiS PAGE



www.manaraa.com

Approved for public release; distribution is unlimited.

Technology Upgrade of a Silicon Compiler

by

Eva G.Malagon
Captain, United S'tates Marine Corps

B.S., Illinois Institute of Technology, 1978

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1987



www.manaraa.com

ABSTRACT

A 1.5 micron dual layer metal scaleable CMOS standard cell library is inserted

into the NMOS based silicon compiler, MacPitts. The MacPitts data-path consisting of

a collection of registers and arithmetic/logic units (organelles) and sequenced by a three

phase clock, was modified to accept two phase clocking and SCMOS organelles.
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I. INTRODUCTION

The MacPitts silicon compiler is a set of VLSI CAD software programs whose

function is to automatically generate a circuit layout from a user-specified behavioral

description of the circuit in the form of an input program. MacPitts is N-channel

(NMOS) technology based. With alternate technologies and design rules available, e.g.,

scalable Complementary iMetal Oxide (SCiMOS), CMOS-PW, and Gallium arsenide

(GaAs), a method of compiling a design in those technologies is desirable to take

advantage of high speed, low power, reduced chip area and higher reliability.

A. BACKGROUND
iMacPitts was developed by researchers at Massachusetts Institute of Technology

Lincoln Laboratories in the early 1980's under a contract to DARPA. At the time of

its implementation, 4 micron NMOS processes were the state of the art technology.

The advanced graphics layout editor of that time was CAESAR. Technology has

radically changed since then, and SCMOS technology with its low power consumption

and smaller feature size of 3 microns and below is a preferred technology today, and

CAESAR has evolved into Magic, a more advanced graphics layout editor that

supports SCMOS designs. The problem of making a silicon compiler dynamic enough

to support rapid technology changes is the motivation behind the research on

MacPitts.

MacPitts, as a VLSI research tool, was initially installed on the Naval

Postgraduate School, Monterey, California, VAX-11/780 computer facility by D.

Carlson, 1984. Carlson's research recommended structural modifications to the

MacPitts system: CMOS layouts which would involve writing a new cell library and

modifying the control unit architecture. A. Froede, 1985, outlined the basic building

blocks that the MacPitts compiler used in building its circuits; data-path, flags,

sequencer, and the Weinberger array control unit. Froede's recommendations included

the addition of NMOS superbufTers to all input and output lines from the data-path,

sequencer and flags, and to all clock lines driving registers and flags; redesign of the

frame to allow pads on four sides of the chip rather than the current three sides;

implementation of a two phase clocking scheme instead of the MacPitts three phase; a

redesign of the data-path to allow data to enter or leave from either the left or right

11
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side to reduce length of wire runs from the pads; and an alternate placement routine

whereby the flags module is not appended to the end of the data-path module thus

extending the length of the chip excessively. Further study of the interrelationship

between algorithmic syntax used to wTite the input program, identified by a .mac

extension, and the resulting circuit layout was done by R. Larrabee, 1985.

To employ the recommended changes, an understanding of the MacPitts source

code is necessary. A study of MacPitts compiler organization and layout language by

M. A. Malagon-Fajar, 1986, set the basis for an understanding of the lists and

structures used by the MacPitts compiler to design a circuit. [Ref 1] An NMOS
equality ( = ) test cell designed by A. MuUarky, was inserted into the NMOS cell library

of the MacPitts compiler replacing the original hierarchically designed NMOS equality

{
=

) cell. The resultant MacPitts-generated NMOS circuit was considerable smaller in

size.

A standard set of CMOS arithmetic/logic and memory cells was also designed by

A. MuUarky. [Ref 2] The clocked SCMOS memory cells were designed for two phase

clocking. The work reported in this thesis inserted the SCMOS cells into the NMOS
technology dependent layout generation routines of MacPitts and altered the MacPitts

code to generate a two phase clock. A change of technology from NMOS to SCMOS

introduced a significant change in the controller. The Weinberger array control unit is

optimum for NMOS layout strategy but not for SCMOS. Therefore, a

microprogrammed controller was designed by J. Harmon, 1987 for insertion into

MacPitts. [Ref 3]

B. CODING

MacPitts is a complex software system containing 1.5 megabytes of binary

executable code. The source code of MacPitts is written in Franz Lisp Opus 38.9. The

compiler can be separated into a set of programs that produce a technology

independent structural specification of the circuit called an object file and a set of

technology dependent routines that produce the actual layout of the circuit and output

a description of the circuit in the low level language CalTech Intermediate Form (CIF).

The former is the front-end of the compiler, the latter is the back-end. A silicon

compiler is similar to a language compiler, except that the object file does not produce

machine code but rather an intermediate description of the circuit.

Lisp is a symbolic computation language suitable for representing complex

systems in terms of symbols and structures. The process is likened to a VLSI design

12



www.manaraa.com

engineer who uses symbols to represent standard cells or macros placed in the

floorplan of a circuit. Just as a designer can move the symbol for a cell on the

floorplan, the compiler can move a symbol from one place to another. The design of a

VLSI circuit is a list-building process in which the lowest level symbols are the layout

geometries of arithmetic/logic/memory units. Lists and structures are used to combine

symbols into more complex entities evolving into a chip. Lisp is a block structured

language, meaning functions are nested inside other functions. This allows ease of

tracing code. The Franz Lisp stepper package and its debugging routines facilitate

easier writing and reading of code.

C. SCOPE

A partial CMOS cell library was inserted into the data-path, and a controller

was designed for the SCMOS version of MacPitts. This thesis explains the pad

placement algorithm and changes the algorithm to allow pads on all sides of the chip.

To complete the placement of pads on four sides the algorithm generating the wiring

from the pads to the controller and data-path must also be changed. The algorithm for

floorplan placement is exposed allowing for future work on a new placement algorithm

for MacPitts.

Alteration of the MacPitts compiler code required thorough familiarity with the

syntax and contents of the source code. Chapter II discusses the general methodology

for the technology modification of the MacPitts data-path. In Chapter III, the

intermediate technology independent code describing a simple nand chip is committed

to a layout and a bit-slice of a data-path is laid out from the specification in the object

file. Chapter IV describes the individual SCMOS cells inserted into MacPitts. Chapter

V describes areas for further development. Many tasks, ranging from the insertion of

the remainder of the SCMOS cells into MacPitts to a smarter routing and placement

algorithm that is compatible with SCMOS requirements and capabilities are discussed.

D. NOTATION

The notation used throughout this thesis is based on the Backus Naur Form

(BNF) syntactic notation. Special symbols used in BNF are

::- means "is defined as"

means "or"

* means "sequence of zero or more"
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The Lisp environment is designated by the LISP prompt sign ->. The parenthesis

surrounding a LISP form indicates the start and stop of LISP's interpretation of an

instruction (..)• The UNIX ^ environment is indicated by a % prompt sign.

^UNIX is a registered trademark of Bell Laboratories.

14
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II. MACPITTS SYSTEM OVERVIEW

A. INTRODUCTION

There are three levels of description in the MacPitts system: the high level

description given by the user in the .mac file (a list of the required elements and

processes to be performed by the circuit), which is transformed by the high-level

processor or compiler into an intermediate-level description. The compiler then

generates the layout of the circuit by generating a description list that is converted into

a GIF file for graphical layout and for fabrication using the MOSIS process.

B. HIGH LEVEL DESCRIPTION

The .mac file contains a functional description of the circuit to be designed. The

program is a straightforward list of type and number of pads, registers, signals, ports,

constants and the processes to be performed. The format for writing the input

algorithm is defined by the Backus Naur Form (BNF) grammer in the BNF file. The

BNF grammer for cell definition and operation is known by the compiler.

C. INTERMEDIATE LEVEL DESCRIPTION

The intermediate form is a list of sources, destinations, circuit size in number of

bits, clock, power, ground, port, signals and their pin numbers. This list of components

and the boolean logic equations defining the controller's logic are described as follows:

object :: = ((definitions) :: = sources, destinations, ports, signals, registers,

power, ground, clock, constants

(flags)

(datapath) ;:= units

(control) :: = wires and operands

(pins) ::= input, output, clock, power, ground, tri-state, I/O.

This file is output by the compiler as a .obj file. It is a technology independent

description of the circuit. The compiler is located in the higher level routine known as

prepass.l and coordinates the seventeen programs that make up the MacPitts silicon

compiler. The higher level routines coordinated by the compiler are prepass.l, and

extract. 1. The compiler then transfers control to the top level layout routine in frame.

1

to layout the circuit. The routine returns a list containing the chip's geometric layout.

15
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The module generators coordinated by the routine frame.l include control.l, data-path. 1,

organelles.!, flags. 1, and pads.l, all of which are highly technology' dependent. In the

unmodified compiler, all layouts are described in N-channel (NMOS) technology. A

limitation of this silicon compiler is the necessity of redesigning a large portion of code

when the technology changes.

The compiler evaluates the global electrical characteristics of the circuit and

prints to the screen statistics relevant to the circuit. If the herald option is selected in

the command line, the compiler also prints to the screen messages to inform the

designer of each step in the compilation process.

The above routines are highly dependent on the defstruct construct defined in the

file lincoln.l and enumerated in defstructs.l. This construct forms the basis for the

creation, selection, alteration (mutation) and query (interrogation) of the data required

to process the input program, the .mac file, and produce a layout of the circuit, an

(.obj) and (.cif) file.

D. LOWER LEVEL DESCRIPTION

A realization of the datapath and control unit of a microprocessor-like circuit is

accomplished through the frame.l function (layout object). The program L5.1 is the

basis for the layout of the cell in terms of providing functions that allow manipulation

of the cell and position of the circuit. This program produces the cif description of the

cell and also has the capability of reading CAESAR files and converting them to L5

formatted code. The revision 7 version of L5 utilized in the Lincoln Boolean

Synthesizer (LBS) programs contains an interface to the CAESAR layout graphics

editor. The program interfaces cells in CAESAR format (rectangular geometry) to L5

format (lists of rectangular geometry). As part of this thesis project an interface

program was written for the more universal CIF (box geometry) input and is listed in

the Appendix.

E. COORDINATING MACPITTS PROGRAMS THROUGH THE MAKEFILE

Each separate program in MacPitts is converted to machine code via the lisp

compiler liszt. The basic programs initially compiled are c-routines.c, lincoln.l, L5.1 and

defstruct. I. Lincoln.l is fundamental to the remainder of the MacPitts system. It

contains basic Franz Lisp functions and other functions written to expand the

MacPitts system capability to manipulate lists. Lincoln.l contains the important

defstructs package which forms the basis for making items, objects and layouts, for

16
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selecting their parameters, for changing those parameters and for querying the items.

The machine coded programs, lincoln.o, defstructs.o and L5.o are loaded into the lisp

environment under the file front-page.l. This file is included in each subsequent

program. These subsequent programs are dependent upon the ability to correctly load

or fasl the above three programs before they can be machine encoded into a.o file. The

remainder of the MacPitts source code is compiled and loaded into an executable

module called macpitts. During the make compilation, the files, rinout and pad20b

have their CIF code converted into L5 code and loaded into the pads.l program. These

two files contain the NMOS 4 and 5 micron pads in their CIF form.

To create an executable files, the .0 programs are loaded or Tasled' into the lisp

environment along with global variables setting the macpitts-directory path name, the

user-top-level, the interrupt handler and the default minimum-feature-size. The lisp

function {dumpUsp macpitts) dumps the MacPitts binary code into a lisp environment

and saves the environment called macpitts. A lisp environment can be invoked by

typing macpitts. The user will have access not only to Franz Lisp primitives but all the

functions defined by the MacPitts source programs. The executable file is created using

the UNIX command make. Make executes commands in the Makefile to update one

or more programs that have been modified since the last creation of the file. The

command make macpitts begins the timely process of compiling each program and

loading those machine encoded programs into the executable file macpitts. Since the

cell libraries (organelles. 1 and library) are loaded into Macpitts only at run time,

changes can be made to both files without remaking the executable file. Since changes

were being made to built-in organelles as well as the organelle library-, the programs

frame.l and data-path.l were removed from the executable macpitts file, and also loaded

at run time.

To load programs at run time, the library file contains the command

(aval compile (boot (concat macpitts-directory 7organeIles)))

The function boot is defined in lincoln.l and allows loading of programs at run time. A

simpler way to test changes to source code is simply to enter the macpitts environment

and load the altered functions. Lisp processes the most recent functions. This allows

thorough testing of software changes before they are incorporated into the MacPitts

baseline program.

17
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F. MACPITTS DESIGN ORGANIZATION

1. Top-Level Design

MacPitts-produced circuit designs are fixed in topology with a standard

control and datapath paradigm. At the top-level, the floorplan consists of three

symbols, the pins-layout, internal-layout and ring-layout. The pads and their associated

ground and power distribution bus comprise the pins-layout. The internal-layout is an

invisible box containing the controller and datapath. The rectangular channel formed

between the pins and the internal-layout is the wiring channel that connects the pads

to the internal layout.

Constraints are readily apparent at this level of the floorplan. Pads are placed

on three sides: the top, right and bottom edges of the circuit. The left edge of the

circuit is the side "^"ithout pads. The top of the circuit is identified by the ground pad

and the bottom of the circuit is identified by the power pad. The connections to the

internal layout are only on the left edge of the internal circuitry. This necessitates long

wiring runs around the channel. A less obvious constraint in the fioorplan is the weight

that the dimensions of the internal-layout and pads have on the wiring channel. If the

pad lengths on either top, right or bottom side of the circuit is shorter than the length

or width of the internal-layout, the wiring channel or ring will form around the

internal-layout. If the internal-layout is smaller in length or width than the length o^

the pads on a side of the circuit, then the pads length on that side will determine the

ring size. Figure 2.1 illustrates the first case and Figure 2.2 illustrates the second case.

In the first case, a very long datapath and short controller will result in empty silicon

space inside the internal-layout since the largest element in the internal-layout

determines the size of the invisible box surrounding it. If the internal-layout is smaller

than the length of the pads, the pads determine the size of the invisible box around

which the ring is formed. This topology will have significant impact as technology

processes shrink and pads in those processes remain relatively large.

2. Second Level Design

The second level or internal-layout is composed of a controller, a datapath

and fiags block and a routing channel between the two. The controller is located at the

bottom left edge of the invisible box surrounding the internal-layout. It is termed the

bottom-part of the layout. The top-part of the layout is composed of the datapath

followed by the flags block. A power/ground/clock distribution bus called the skeleton

embeds the entire internal-layout. Figure 2.3 shows a stipple plot of the skeleton

18
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Figure 2.1 Top-Level Layout Constraint.

layout. The clock wires run horizontally through the length of the skeleton. The

skeleton receives its power from the power pad on the bottom of the circuit and

ground from the ground pad on the top of the circuit. Both pads generate single metal

wires that run vertically to butt up to the skeleton. If the skeleton is not long enough

to reach the power or ground pad, the power connection is never made. Between the

control and datapath/flags block is a horizontal wiring channel. Input/output wiring to

the controller is called the wing layout. Internal wiring between the controller and

datapath/flags block is automatically accomplished by the river router facility. Between

the wiring channel and the datapath, clock wires and drivers are placed. The three-

phase clocking scheme generates three clock wires and three-phase clock drivers. A

two-phase clocking scheme involved the removal of a clock wire and redesign of the

clock driver to a two-phase driver to provide clock signals to the registers. This

datapath layout is illustrated in Figure 2.4.

The pads are placed on the frame relative to the internal-layout. The lower left

corner of the internal-layout provides the origin of the chip layout from which all pads

and wires are positioned.. The width of the internal layout is called the intended-top

19
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and the length of the internal layout is called the intended-right. Given these values for

length and width the pads are placed at an extended-top and extended-right position.

The pads on top are aligned at x = 0, the right is at y = 0, the bottom is at x =

and the left is at y = 0. Based on a simple placement algorithm, the pads are placed

clockwise around the circuit. The number of pads per side is found by dividing the total

number of pads by the value 3. Rounding the result down to the nearest fixed number

and incrementing by the value 1, gives the Upins-per-side. The first one-third of the

pads are placed on the top side, the second third on the right side and the remainder

on the bottom side. A division by the value 4 would allow the pads to be placed on the

left edge of the circuit. However, a namesiack overflow condition occurs because the

ring layout algorithm is not designed to run wires from the left side of the chip. The

net wiring in the ring channel requires decoding to allow net connections at the left

edge of the chip. Since all wiring is directed to and from the internal-layout on the left

edge of the circuit, long wiring runs around the ring and internal to the buses can be

seen.
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3. Internal Level of Design

The datapath is organized as the assembly of an array of units. A unit is n bits

of either an organelle, a register, a port-output, a port-internal or a bit wire. An

organelle is a bit-slice arithmetic/logic/shift cell that is maintained in the external

library. The built-in organelles are the register cells, the ports and bit wire. These

organelles are maintained in the data-path. 1 file. Units are connected by buses that run

in the horizontal direction between bit-slice organellcs/rcgisters/ports/bit wires. Buses

run on coUinear tracks. The tracks are segmented so that the bus lines do not have to

stretch to the ends of the datapath. The segments of the tracks are called internal-buses

or local buses. They pass output signals from one unit to the input of another unit.

The longest bus wire is that of the port-output and that depends on its position in the

datapath. Positioning of units in the datapath is done by the ordering routines in

order.l. Figure 2.5 illustrates the unit layout of a four unit datapath with the internal
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bus composed of two tracks. This figure also illustrates the architecture within a single

unit.

In general, along a vertical slice of the datapath, organelles are stacked to

form a unit of a length specified in the input program by the word-length. Each

horizontal slice corresponds to a single bit slice of each unit in the datapath. The

architecture of a bit slice unit is composed of an organelle-part, river-part and nipx-

part. Mpx-part can be a multiplexer or single metal wires tapping off of the polysilicon

bus lines. The multiplexer is connected to the inputs of the organelle by a diffusion

wire generated by the river router.

Organelles are functional units interspersed between registers to implement the

operations required by the input algorithm. Functional units such as adders,
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incrementers, logic cells identified in the input program as (word-nand, word-nor,

word-xor ) compute the values of forms used in setq forms in the input program.

MacPitts has two data types: integer and boolean. Functional units produce integer

outputs. That is, the output of a functional unit is a full word used by datapath. Test

units, on the other hand, produce boolean outputs that are passed to the control unit.

The library file contains a function construct that interfaces between the symbol used

for an operation in the input program e.g., (word-and word-equ word-xor ...) and the

name of that operator in the organelle data structure in the library, e.g., (and equ

xor....). The function construct is of the form (function <function-name > < organelle-

name> ....). The organelle construct then calls the layout of that operator by the cell

defmtion function {layout- < name> -organelle).

Test units such as the equality ( = ) or < > provide output test results to the

control unit to implement primitive conditions used in the cond form. Test units do not

pass their results to the datapath. When constructing the datapath MacPitts stretches

the connection points of the organelle to connect with power and ground rails and with

the data bus and test/control lines if required. Test comparator output lines are not

stretched, but are daisy chained internally to the edge of the datapath for connection to

the controller.

The layout of each organelle is generated by a LISP function {layout-gen-

form), called by the compiler. The function passes an instantiate command to the

organelle data structure in the library. Information on the dimensions of organelles,

interconnection and power requirements, as well as the call to instantiate the layout o^

the cell, is contained in the (gen-form) field of the organelle data structure, the form of

which is:

(organelle < name > < #control-lines > < #parameters > < #testlines > result?

(gen-form)

(sim-form))

This construct is a specific case of the definition desfstruct. The information contained

in the gen-form function is illustrated in the functional block diagram of an organelle's

bounding box and connection points in Figure 2.6. The gen-form function is defined in

Table 1.

MacPitts uses this information to properly space the organelles and to stretch

their connection points to connect with the control lines, power lines, and local

interconnection buses. The insertion of SCMOS cells required that the information
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TABLE 1

GEN-FORM

(lambda (info bit word-length drive ratio)
;The info argument is a field that matches any of the fields

•listed in the body of the gen-form.
(cond

((eq info 'instantiate)(first-quadrant
(layout- < name > -organelle drive ratio))))

;Call to layout the cell. First quadrant positions the origin at
;the lower left edge.
feq info 'length) x)
[eq info 'wi^h) y)
(eq info 'inputs) (y ly2))
[eq info 'output) '(x5T)
eq info 'vddV '(x2)?
feq info 'gnd) '(x3))
[eq info 'daisy) '(xl x4))
;Daisy is a form of pitch matching the output of a bit slice cell

;to the input of the next bit slice cell

({eq info 'output-type) '(ratio))

((eg mfo conductivity) (x))
;Conductivity values used to size power and ground buses for the
;internal layout.

((eq info '#transistors) '(n p))
;The value n is the total number of transistors and p is the
total number of puUups in the organelle.

((eq info 'drive) '(x))

;In the NMOS version of MacPitts
;a pass transistor is appended to the output of a unit if the
;unit's bus number is positive. The pass transistor drives the
;gate of the unit to which it passes its output signal.

contained in the gen-form match the characteristics of the SCMOS organelle and that

the layout geometry of the cell be placed in the compiled library, organelles. 1.

4. Conversion Procedure

Converting from one technology to another requires an intermediate form in

which both technologies may coexist. This form is known as hybrid because it is dual

technology. The program under conversion to SCMOS technology is referred to as a

hybrid program because the circuits produced by the compiler contain a mix of NMOS
and SCMOS layouts.

The procedure for inserting an SCMOS organelle into MacPitts begins with

the conversion of the organelles' CIF code to rectangular code and formatting the code

so that it is parenthesized with a header of {defsymbol <name> nil ....). This form will

be explained in more detail in Chapter IV section B. A simple conversion routine was

written converting the CIF code to rectangular code. Cif geometry is formatted in the

box form:

(B length width xcenter ycenter)
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whereas, L5 form is formatted in rectangular form:

(defsymbol < name > nil (merge (rect xmin ymin xmax ymax)))

A cell definition function is created of the form {layout- < name > -organelle). The

function calls the L5 code or defsymbol containing the geometry of the cell. The

attributes of the organelle contained in the gcn-fbrm field of the organelle data

structure in the library is altered to reflect the size and interconnection points of the

SCMOS cells. The cell definition and the geometric layout functions are loaded into

the macpitts environment and plotted for dimensional analysis using the functions

{thesis-plot) or {plot) ^ in the file plot.l. The user must be in the LISP or macpitts

environment when using these functions. The organelle is plotted and its dimensions

^The format of the thesis-plot function is:

{thesis-plot {layout- < name> -organelle drive ratio)

title external micron; lambda) is the form of the thesis-plot function. An
example is: -> (thesis-plot (layout-xor-organellc '{4 4)) 'xor t 1.5)
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manually measured from the stipple plot using the simple conversion of {(scale /

feature-size) * measured value). ^ The locations of the interconnections and the length

and width are entered into the gen-form of the particular organelle being changed. The

gen-form function is loaded at run time into the macpitts environment. An input

algorithm is written in the form of a < filename.mac > program to test the organelle

for misalignments. For example, to generate an inverter circuit, the .mac program is

written as in Table 2. To test the various library functions, this same program is run

with the names of the functional library forms: word-and, word-nand, word-xor word-

nor, word-or, word-equ.

TABLE 2

MACPITTS INPUT PROGRAM

;(program <name> < word-length >
(projgram macnot 1

;(der < pin-number > ground)
(def 1 ground)
;(def <- pin-number > clock)
(def 2 pnia)
(def 3 phib)
;( def < pin-number > power)
(def 6 power)
;(def <name> port < input output tri-state i/o>
;([ < pin-numbers > ]*) internal)
(def a port input (4)J
(def b port output (5))
;(alwavs [

< form> J")
(ahvays

(setq b (word-not a))))

;(setq < port-name > <form>)
;<form> = (word-not integer)
;Returns the complement ofthe integer. Word-not is a library
•.function

The setq form in this program causes the datapath to evaluate a sequence of

operations on input data, in this case, data into port a. The result is output from the

circuit through a port, in this case, port b at the end of the clock cycle. The always

construct results in a stateless process whereby its functions are executed every clock

cycle. This program is written to a file in the VI editor on the UNIX system with a

.mac extension. While in the macpitts environment, the command (macpitts

^Scale is read from the header information on the stipple plot. Feature size is 1.5

microns per lambda for SCMOS or 2.5 microns per lambda for NMOS.
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< filename >) is executed. The execution returns a < filename > .cif and

< filename > .obj.

The .mac input program is read concurrently with the data file, library, during

compilation. The compiler's higher level routines examine this source code and extract

a technology independent intermediate level description of the system in the object file,

which is given for the inverter example in Table 3.

TABLE 3

OBJECT FILE

object file
definitions list

(destination b)
(source a)
(logo macnot)
(ground 1)
(port a input (4))
(port b output p))
( phia 2)
(phib 3)
(power 6)

fags specifcation
nil

datapath specification
((organelle not -1 (((port-input a))))

(port-output^ b(((internal Ij))))

control specification
nil

)ins specification
[3 phib))
2 phia))
1 ground))

[6 fponer))
[4 (input a O)(port-input a 0)))
[5 (outputs (b 0) (port-output b 0)))))

Each of these forms is specified by the defstruct definition. The circuit layout

is then specified in the .cif file produced by the compilation process. Upon completion

of the execution of the program, the cell is plotted and checked for misalignments.

To plot dual layer hybrid circuits, the file patterns was created containing

stipple designs for NMOS and SCMOS layers. The cifplot command is invoked to

generate stipple plots of circuit designs.

cifplot [options] < filename > .cif
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In order to work in a dual NMOS and SCMOS environment in MacPitts the

(allowed-layers) function was modified to accept both NMOS and SCMOS layers

creating a HYBRID environment. '^ Additionally, the (macpitts-compiler) function was

modified to accept 3 micron minimum-feature-size. The function (pad-class) was altered

to allow plotting of NMOS pads while invoking the 3 micron feature size. The pads

located in the file rinout are plotted at a minimum-feature-size of 250 centimicrons per

lambda. The pads located in the file padlOb are plotted at a minimum-feature-size of

200 centimicrons per lambda. The SCMOS pads have not been inserted yet. [Ref 3]

discusses these modifications in more detail.

5. Key Constructs

The key ideas relevant to the porting of a new technology into MacPitts is the

ability to build layout structures from list structures known as item and to make

symbols out of lower level units, place them in a symbol table, and call the symbol-

number as many times as required. Each call to the symbol number places a copy of

that cell with the origin at a designated position on the grid of the cell doing the

calling. An item is a structured list that contains information on a cell, its bounding

box, its points, calls to other cells used to hierarchically build itself and its rectangular

geometry. It is a long defstruct of the following form:

(item left bottom right top points called-symbol-names tree)

The layout geometry of a cell is contained in the symbol-making construct defsymbol ^

as defined in the program L5.1.

When a call is placed to that defsymbol, the macro checks to see if the cell has

a symbol number on the symbol table, -L5-symbol-list. If it does not, it converts the

geometric code into an item form, and extracts information from the item to build a

symbol and place that symbol on the -L5-symbol list. It then converts the rectangular

code into CIF and places it in the -L5-symbol-file. Symbol is a defstruct of the form:

(symbol ID left bottom right top points internal-symbols nest-level tree)).

Defsymbols are a space and time saving device. However, as technology changes, and

cells such as pads are proportionately larger because of shrinking feature sizes, the

conversion of large amounts of CIF code to rectangular code become unfeasible. The

recursive powers of LISP were not designed to hold 940 lines of CIF code on a stack

while processing the conversion. A new symbol making structure that addresses this

"^An in-depth discussion of SCMOS layers is contained in the file "text" in

/vlsi/berk83/doc/magic/scmos.

^Defsymbol is a LISP macro. Macros produce code and then evaluate the code.
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difTiculty by extracting symbol information directly from the GIF code is currently

under development. [Ref. 3]

Defsymbols and items allow for the hierarchical construction of the circuit.

Hierarchically constructed modules such as the datapath, control, Hags, pins, skeleton,

and uing are defmed as defsymbols. Small item structures grow into big item structures

with calls to the lower level units. An illustration of an item is given in Figure 2.7. The

top-level layout is a set of calls to lower level cells. Each call to a cell places a copy of

that cell with the origin at a designated position in the grid of the cell doing the calling.

Figure 2.8 diagrams the hierarchy of calls for a MacPitts circuit composed of an

equality (
=

) organelle and a register.
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III. DATA-PATH LAYOUT

A. METHODOLOGY
The method of committing the datapath specification extracted from the input

program (.mac) and located in the object file (.obj), to an L5 geometric layout in the

form of an item is the subject of this chapter. Specifically, the datapath generated for a

four bit HYBRID nand circuit containing an SCMOS nand organelle in an NMOS
circuit layout is examined.

This input program nand.mac, is a behavioral description of the 4 bit nand circuit.

Table 4 lists the input program. The program is written to a file with a .mac extension.

For example, the above program is written to a file named nand.mac. The program is

executed by invoking the macpitts executable command on the UNIX command line.

macpitts < filename >

where the filename in our example is 'nand' without the .mac extension. Statistics are

printed to the terminal screen on each execution and may placed in a file, e.g.,

< filename > .stat as follows:

% macpitts nand > nand.stat &

The statistics of the circuit generated are placed in the file nand.stat. The & places the

process in the background. The technology independent intermediate description of

the circuit in nand.obj is generated. The object file is listed in Table 5.

The object (.obj) file is a list containing five sublists: definitions flags, datapath,

control and pins. The datapath sublist contains the technology independent description

of the structural composition of the datapath that is then translated into a layout. The

datapath is best described as an array of units. Each list within the datapath list

describes a structure of each unit in the datapath array. The datapath list is called a

unit-list for this reason. The unit-list for the HYBRID nand circuit is composed of two

units: organelle and port-output.

Each unit in the unit-list has its own circuit structure. A unit may be a register

cell, organelle, port-output, port-internal or a bit. These five circuit types are the

building blocks of the datapath. An organelle can be an integer or boolean logic

organelle. Integer logic organelles are (word-nand, word-and ....) and boolean logic

organelles are (nand, nor, not, and, or, xor, equ). Other types of organelles include an
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TABLE 4

INPUT PROGRAM FOR A 1-BIT NAND CIRCUIT

(program nandchip 1

;The circuit is a 1 bit nand gate with two 1 bit input data buses.
;one 1 bit output data bus, a two phase clock bus and a ground and
;power bus. Clock phases must be defined in all iMacPitts programs
;whether the circuit is clocked or not.

(def 1 ground)
(def a port-input (2))
(def b port input (3V)
(def c port output (4))
(def 5 phia)
(def 6 phib)
(def 7 power)

;The LISP form (word-nand a b) takes the logic nand of two inputs and
;places the result on the output bus (port c). This is done every clock
;period as specified by the 'always' construct.

(always'
(setq c (word-nand a b))))

arithmetic organelle (+ - /+ /-), a test comparator organelle (= < > < > ..) and

left or right shift organelles: (<< 2<< 3< < 4< < 8< < > > 2> > 3> > 4> >

8> >). Organelles are contained in a cell library. The organelle layout information is

contained in the compiled source program, organelles. l. The uncompiled file, library

contains an organelle data structure that contains a file of information on each

organelle. The type of information found in this data structure is the length and width

of the organelle, i.e., its bounding box, the location of its I/O, Vdd, and gnd terminal

points along the edges of the bounding box, the number of transistors in the organelle

as identified in the gen-form as ^^transistors and the power requirements as identified by

the field conductivity. The portion of the organelle data-structure that contains this

information is called gen-form.

1. Defstnicts

These concepts are implemented by the defstruct data structure. To retrieve

data by name, a construct is created from LISP called a defstruct. For example, if A is

an array, A[i] is a name for one one of its elements. In the assignment B := A[i], the

name B refers to the value of A[i]. In applicative languages like LISP, an array is

defined as a Ust, e.g., (setq A '( (Al A2)(B1 B2))). The value of a field in an array is

found by progressive search of the head or tail of the list. LISP uses the nonmnemonic
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TABLE 5

OBJECT FILE FOR A NAND CIRCUIT

Definitions
(({destination c)

(source a)
(source b)
(logo macnand)
(word-length 1)
(ground 1)

(port a input (2)
(port b input (3)
(port c ouTput (4))
(phia 5)
(phib 6)
(power 7))

Flags Specification
nil

Datapath Specification
((organelle nand -1 (((port-input a)(port-input b))))
(port-outj)ut c (((internal 1)))))

Control Specijication
nil

Pins Specification

((:> (phia))

(1 (ground))
(7 (power))
(2 (input (a O)(port-input a 0)))
(3 (input (b O)(port-input b 0)))
(4 (outputs (c 0) (porf-output c 0)))))

names CAR and CDR for the search for the head or tail of a hst. To find the value of

Al, the Lisp function (caar 'A) returns the value Al. To retrieve the same data by

name, a long defstruct of type 'array' is created. The user enters the macpitts

environment and types the following:

(defstruct array

rowl (first second)

row2 (first second))

The array is created by the {make-type field) creator function.

- > (setq rowl (make-row 1 -array '2 3) < cr>

(rowl 2 3))

- > (setq row2 (make-row2-array '5 6) < cr>

(row2 5 6)

To select an array value:

-> (row I -array-first rowl) <cr>
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2

To change a value

-> (replace-row 1 -array-second row 1 8) <cr>

(rowl 2 8)

A short defstruct for the array example provides another result.

(defstruct array I

(rowl row 2))

- > (setq array '((2 3)(5 6))) < cr>

((2 3)(5 6))

- > (make-array array) < cr >

(((2 3)(5 6)))

To select a value:

To replace a value:

> (array-row 1 array)

(2 3)

(replace-array-row2 array "(4 5))

((2 3)(4 5))

The defstruct structure is an automatic CDR generator and is defined in the source

program lincoln.l The short defstruct now exits in the basic Franz Lisp symbol table

as a primitive. The long defstruct has not yet been incorporated into Franz Lisp.

The following defstructs define the structure of the datapath.

(defstruct data-path

((unit))

The unit defstruct is defined as:

(defstruct unit

organelle (name bus# mpx)

;;(organelle + -1 (((internal 8) (constant 10))))

register (name bus# mpx)

;;(register timer -2 (((constant 0)(intemal 4))))

port-output (name bus# mpx)

;; (port-output display (((internal 7))))

port-internal (name bus# mpx)

;;(port-internal carry -3 (((constant l))((constant 0))))

bit (bit-list mpx) )

;;(bit (0) (((internal 5))))
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The mpx is a defstruct composed of an argument. An argument is composed of an

operand. The operand types are {port-input name), {internal bus#), {constant number)

and so forth. Mpx, argument, and operand are defstructs defined in the source program

defstructs.l. Understanding the nesting among the defstructs makes the datapath

specification in the object file comprehensible. The datapath specification in the .obj

file for the HYBRID nand circuit is composed of a unit-list of two elements:

unit 1 < - (organelle nand - 1 (((port-input a)(port-input b))))

;( organelle name bus# mpx)

; mpx < - (((port-input a)(port-input b)))

unit 2 < - (port-output c ((internal 1)))

;(port-output name mpx)

;mpx < - ((internal unit#))

The form {internal 1) indicates an internal bus from unit#l connecting to unit#2.

B. ARCHITECTURAL IMPLEMENTATION OF A UNIT

The layout of an organelle, register, port or bit is accompanied by the layout of

either a multiplexer or single vertical wires. The organization of a unit is a {mpx-part),

{organelle-part), and a channel {river-part) where the river-router connects the mpx-part

to the organelle-part. The mpx-part is a generic term for the placement of a metal wire

or multiplexer at the inputs of an organelle, register, port or bit. The data buses lie in

the horizontal channel between bit slices of organelles. Tracks are the number of

horizontal bus lines. These lines are segmented on the same collinear track, allo-s^ing

units to connect to each other on short local or internal bus lines. The bit slice unit is

stacked along a vertical slice of the datapath to form a unit.

1. Database

The datapath fioorplan parallels the organization of the database, i.e., the

LISP functions that create the layout of the data-path. The top-level function {layout-

data-path), coordinates the layout of the data-path. It receives the unit-list or datapath

specification from the object file as an argument, and returns the layout of the

datapath in item format.

datapath layout < - (item left bottom right top points called-s>mbol-names tree)

The unit-list is recursively processed by the function {layout-unit-Ust). The individual

unit is processed by the function {layout-unit).

A unit-type can be either an organelle, register, port, or bit of n-bits as

specified by the word-length in the .mac program. Each unit type is recursively
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processed by the function {layout-organelle-Ust). The actual layout of a unit type is

accomplished by the function {layout-organelle). The multiplexer is generated by the

{layout-mpx) function. The unit-type is generated by the {layout-gen-form) function. 1 he

{river) function generates the wires that connect the two structures. Figure 3.1

provides a flowchart of the functions that process the datapath specification into a

layout. Figure 3.2 illustrates the topology of the datapath and the LISP functions that

generate them.
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1 layout-mpx
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layout-upper-extension

layout-lower-extension

layout-driver

extend

Figure 3.1 Flowchart of Functions in Datapath.

C. ORGANELLE-LIST

1. Data-Path Placement Algorithm

The datapath placement algorithm begins with the function {layout-organelle-

Ust). For an n-bit word organelle, the most significant bit (MSB) is positioned at {x y)

= {0 10) lambda. The rest of the bits are placed relative to the MSB at

37



www.manaraa.com

layout-mpx layout-gen-form

layout-organelle

(layout-buses)

layout-organelle

layout-unit

layout-unit-list

layout-data-path

Figure 3.2 Functional Layout of the Datapath.

X = and y = y + 4 -h {5 * tracks) + organelle-width.

The channel width of (5 * tracks) in this equation accommodates the buses. This factor

is based on a wire width of of 3 lambda with a spacing of 2 lambda between tracks.

Figure 3.3 illustrates the placement of the organelles within a unit. A unit's width is

defined by the maximum-widih-list. This list contains the width of the largest operator

in the datapath repeated by the number of bits in the word-length.

2. Layout Organelle

The {layout-organelle) function coordinates the generation of the bit-slice unit.

The bit-slice of a unit requires the layout of the mpx-part, organelle-part and river-

part. It receives a unit-type [organelle, register, port-input, port-internal, bit), as an

argument and calls the {lookup-gen-form) function to get the unit's gen-form.
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Figure 3.3 Unit Placement.

a. Gen-Form

Gen-form is a function within the organelle data structure in the library and

within the layout functions for the register, port-output and bit in the source program

data-path.l that gives pertinent information on the unit-types dimensions, terminal

connections and power requirements. The function {lookup-gen-form) determines if the

unit is a register, organelle, port or bit. If the unit is an organelle, the gen-form of tlie

organelle in the organelle data structure is looked up in the library by the function

{lookup-gen-forml). The defstruct selector function {organelle-defmition-gen-form)
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returns the gen-form of the organelle. The LISP code below assigns the keyword gen-

form to the values of the gen-form function.

(let ((gen-form (lookup-gen-form unit definitions))

If the unit is a port-output, or port-internal, the {layout-port-output) function

is returned. If the unit is a bit, the {layout-bit) function is returned. If the unit is a

register, the {layout-register) function is returned. These layout functions contain their

own gen-form function. The SCMOS nand organelle gen-form is given in Table 6, and

a functional block, diagram illustrating the locations of the terminals listed in the gen-

form is shown in Figure 3.4.

3. Tail

MacPitts provides constructs to allow the datapath layout functions to query

the values of the attributes of instantiated organelles. The arguments passed to the gen-

form of an organelle are determined by the {get- tail) function. A unit that is either a

register, port, bit, or organelle is passed as an argument to the {get-tail) function and a

list of values for biti4, word-length, drive and ratio is returned to the {layout-organelle)

function. The lists returned by the {get-tail) function depend on the unit-type passed in

as an argument. Table 7 provides the list returned for each unit-type.

For example, the 1 bit SCMOS nand organelle has the following tail assigned

to it.

tail <" (0 1-1 (4 4)).
(bit# #Dits drive ratio)

These values match the arguments passed to the gen-form of the nand organelle in

Table 6. The organelle's gen-form has the arguments {info bit word-length drive ratio).

The values of the arguments are bit = 0, word-length = 1, drive = -1 and ratio = (4

4). The drive value is the bus# of the organelle. If the value of the bus# is >0, a

passgate is appended to the output of the NMOS organelle and is gated by a control

signal, otherwise the basic NMOS organelle is instantiated. The ratio is used to size

the pull-down transistor gates at the inputs of the nand organelle The info form is any

one of the fields in the gen-form function {instantiate, width length, inputs, output, vdd,

gnd, drive, daisy, test, ^^transistors conductivity ....)

a. Ratio

The ratio of an organelle is required in the NMOS version of MacPitts to

hierarchically construct the organelle. The ratio for each unit in the data-path is

determined by the function {data-path-ratio). The {unit-ratio) function determines the

ratio of each unit. The HYBRID nand circuit is composed of two units: a SCMOS
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TABLE 6

SCMOS NAND ORGANELLE GEN-FORM

gen-form :: = (lambda (info bit word-length drive ratio)
(cond

if info = instantiate, then (eq info 'instantiate) returns a 't' value
causing the execution of the (layout-nand-organelle ...) function. The
function (first-quadrant) places tlie lower left corner of the organelle
at the origin.

((eq info 'instantiate)
(first-quadrant(layout-nand-organelIe drive ratio)))

The measured length and width of the organelle is in lambda units.
The orientation of the organelle is: inputs on the left, outputs on top.

((eq info 'length) 32)
((eq info 'wicfih) 37)

Inputs are measured along the y-axis
((eq info 'inputs) '(16 24))

Daisy is measured along the x-axis. The SCMOS nand organelle has no
outputs or clock requirmg daisy-chaining.

((eq mfo 'daisy) 0)

Output-type = ratio is for NMOS organelles. The SCMOS organelles do not
have special output-tvpes.

((eq info 'output-type) '(ratio))

Drive provides the location of the passgate appended to the output of
of an NMOS organelle. The passgate is enabled by a control line. The
SCMOS organelles are designed with built-in drive and do not require a
drive structure.

((eq info 'drive) ())

Conductivity information is heuristically arrived at for static NMOS
oreanelles. A heuristic value for SCMOS organelles is also required

((eq info 'conductivity) (quotient 1 5u))

Power and ground locations are measured along the x-axis. These lines
run through the vertical length of the unit.

((eqinfo'vdd)'(18))
((eq info 'gnd) '(9))

Output is located on the top of the cell and is measured along the
X-axis

((eq info 'output) '(30))

The #transistors is composed of a list of two fields. The first field

is the number of FETS and the second field is the number of pullups.
The function (data-path-transistor-count) determines the number of
transistors used in tne layout of the datapath by querying the
gen-form of the organelles. The total number of transistors used by a
MacPitts circuit is output as a statistic. The SCMOS nand cell has
four FETS^ two Nfets and two Pfets. The number of pullups are
irrelevent for static CMOS.

((eq info #transistors) '(4 ()) ))
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Figure 3.4 Bounding Box for a Nand Organelle.

nand organelle and a port-output. The datapath ratios for this HYBRID circuit is the

list

data-path-ratios = ((4 4) 4).

The first list (4 4) gives the ratio for each pulldown transistor for each input of a

NMOS organelle. The NMOS nand organelle is constructed from a puUup of fixed gate

size (2 lambda x 8 lambda) and two pulldown transistors added in series to provide a

two input nand gate. The pullup is kept to minimum-size. Overall ratio may be

changed from 8:1 to 4:1 by adjusting, for example, the L:W ratio of the pull-down

transistor. A 4:1 pulldown transistor has a 2 lambda x 2 lambda gate. An 8:1 ratio

pulldown transistor has a 2 lambda x 4 lambda gate. The second unit, port-output,

has a ratio of 4 as defined by the second value in the {data-path-ratio) list

SCMOS organelles do not use ratio as a parameter for cell construction,

primarily because the cells are not hierarchically constructed by the MacPitts program

organelles. I, but are completely defined at the gate level. Ratio is not used as a
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TABLE 7

ARGUMENTS TO THE GEN-FORM

UNIT-TYPE TAIL

register (bit# #bits (register-unit-bus# unit)
ratio)

(bit# #bits drive-type ratio)

port-output (bit# #bits ratio)

port-internal (bit# #bits ratio)

bit (bit# (bit-unit-list unit) ratio)
(bit# bits-needed ratio)

organelle (bit# #bits (organelle-unlt-bus# unit)
ratio)

(bit# word-length drive ratio)

parameter in the generation of the SCMOS organelles, but is retained while working

with a HYBRID chip.

4. Drive

A port is specified in the input program (.mac) as follows:

(def < port-name > port [input / output / tri-state/ i/o

([ < pin-numbers]*) / internal])

The function {extract-port-setq) extracts port information from the behavioral

specification of the chip in the .mac program. The function {does-port-need-drive) reads

the port specification in the input program. If a tri-state or IjO port is specified, a

passgate is appended to the output of the unit fed by that bus. Drive is indicated by

the bus# of the unit type. A positive (>0) causes the instantiation of the passgate to

the output of the unit. The NMOS organelles, except the equality ( = ) and < >0

cells, may have a passgate at their outputs if specified by the object file. Equality (= )

and not equal ( < > ) organelles have a bus# = to indicate that they do not pass

their outputs to the datapath.

Bus numbers are assigned in the extraction of the datapath by the function

{assign-bus-numbers) in sequential order. The {post-process-busU) function transforms

the bus# of each unit to a negative value (-1 -2 -3 ) Positive organelle bus numbers

indicate the instantiation of a passgate at the output of the organelle.
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SCMOS organelles were designed with built-in drive values. In particular, the

three inverters with increasing drive capability are identified by the Ix, 4x and 8x

extensions in the MuUarky SCMOS Cell Library. The remainder of the SCMOS library

cells are assumed to have the minimum drive of Ix. In the SCMOS version of

MacPitts, the need for additional drive to the SCMOS organelles, as a function of the

use of I/O pads requires further investigation.

D. ORGANELLE LAYOUT

Figure 3.5 illustrates the topolog>' of the bit-slice unit. The organelle-part is

created by the {layout-gen-form) function. This function instantiates either an organelle,

register, port, or bit and adds metal wire extensions to Vdd, gnd and output. The

instantiation of the organelle is initiated by inserting the keyword instantiate into the

list called tail and passing the tail to the gen-form of the organelle. The LISP code

- > (call-list gen-form (cons 'instantiate tail))

passes the instantiate command to the gen-form of the organelle causing the layout of

the organelle. An item is returned containing the layout information on the organelle.

The flow of execution in the Lisp environment is as follows:

tail = (instantiate 4 - 1 (4 4))

gen-form :: = (lookup-gen-form unit definitions)

gen-form = (lambda (info bit word-length drive ratio)

(cond ((eq info 'instantiate....)

info = instantiate

;The equality is satisfied and a 't' value is returned.

;Layout the organelle and return an item containing the layout.

(first-quadrant (layout-nand-organelle drive ratio)

; drive = -1

; ratio = (4 4)

;An item is returned of the form

;item <- (left bottom right top (points) (called-symbol-names) tree)

The Macpitts function {first-quadrant) places the origin of the cell at the lower left

corner. The {layout-nand-organelle) cell definition is located in the source program

organelles. I. It calls the defsymbol containing the layout geometry of the cell. The call

to the defsymbol causes the creation of an item out of the layout geometry.
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Figure 3.5 Bit-slice Unit Topology.

1. Layout Geometry of an Organelle

The SCMOS ^ nand organelles code (as inserted into the source program

organelles.! ) is listed in Table 8

The {layout-nand-organelle) function calls the actual layout of the SCMOS

nand organelle. The name of the geometrical description of the SCMOS nand organelle

is nand2. The SCMOS nand organelle is transformed from CIF code to L5 code by

invoking the function (cifsave) in the program cifdef.l, listed in Appendix A, and

concatenated into the organelles.! file. The NMOS (layout-nand-organelle) was

commented out with the LISP command (comment).

During the execution of the input program, nand.mac, the nand organelle is

instantiated and converted to an item. The defsymbol macro converts the layout

geometry to an item. It assigns a symbol-id

symbol-id = (nand2 81)

^The SCMOS layer list is described in detail in the "text" file under

/vlsi/berk.83/doc/magic/scmos directory on the VAX 11/780.
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TABLE 8

CODING OF SCMOS NAND ORGANELLE

(defun layout-nand-organelle (drive ratio)
(nand2))

(defsymbol nand2
;The function defsymbol has the following syntax:
;

(defsvmbol name arguments code)
;The name of the defsymbol is 'nand2'.
;The arg.uments are 'nil'

;The coae is the merging of a list of rectangles
; :and marks
;that form the complete geometric description
;of the organelle.

nil

;(merge items)
(merge

;(rect layer xmin vmin xmax ymax)
(rect'CWP-26-I2-12 14)
(rect'CWP-24-14-14-li)

;(mark. name x v laver attributes)
(mark 'GND -19-18 'CMS nil)

(mark 'IN2! -26 -3 'CPG nil)))

\K and y are the
;coordinates where the mark is positioned.
-.Attributes are used to direct other program sections to the
•.portion of the item they should operate on, e.g. river.

to the code. When a defsymbol is called, it automatically generates an item out of that

code. It creates a symbol from the item of the form:

symbol = ((nand2 81) -28 -19 2 18 ....&)

(symbol ID left bottom right top points internal-symbols nest-level tree)

The symbol form is placed on the -L5-symbol-Ust.

-L5-symbol-list = ((nand2 81) -28 -19 2 18 ....&)

The defmacro defsymbol determines if the organelle is on the -L5-symbol-list.

If it is not, it adds a new symbol to the -L5-symbol-list. It creates the symbol by the

function {create-symbol item symbol-id). The code of a defsymbol is transformed into an

item. That is, the code consisting of a list of rectangles and marks is processed into an

item of the form:

nand organelle item = (-28 -19 2 18 ((& -19-18 CMS nil) )
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2. Organelle Extensions

The connection points on organelle's are stretched by three functions and are

examined using the SCMOS NAND organelle example. The connection points that

are now discussed will be in NiMOS layers as this insertion is in HYBRID mode.

a. Output Connection

The (layout-output-connection) function extends the output terminal of the

SCMOS nand gate by appending a metal wire with a poly-cut (NMOS) at the end. The

bus tracks are wired in polysilicon layers. The output signal from the SCMOS nand

organelle is passed to an internal bus to the port-output unit. The output terminal on

the SCMOS nand organelle is located on the top right of the organelle. In general, if

the unit's bus number is not zero (< >0) i.e., (...-2 -112 ...), or the unit is a port-

output, an output extension is built onto the organelle's output. The equaUty ( = ) and

not equal ( < > ) cells are assigned bus numbers of zero (0) because they do not

propagate their output signals to the datapath and thus no extension is built on the

output terminal of the organelle. To find the location of the output on the organelle

or port or register, the following LISP code is executed:

(let (output (car (call-list gen-form (cons 'output tail))))

gen-form = (lambda (info bit word-length drive ratio)

(cond

((eq info 'output) '(30)) ...&&)

The output is placed at the head of the Ust called tail. Recall that the tail for an

organelle is composed of the fields (bit# #bits drive ratio).

tail = < (output 4-1 (4 4))

info = output

The metal wire extension and its poly cut are marked for connection to the

internal bus by the tip defstruct defined as

(defstruct tip
input (unit/^ argument^ operand^)
output (umt#)
left7)
right 0)

The input and output cases of the defstruct tip refer to bus connections to the units in

the datapath. Left and right cases refer to connections made by the signal net list from

the pads to the terminal connections on the left edge of the internal layout. The

execution of the (layout-output-connection) function results in the return of an item.

Our example, returns the following item:

output-connection item < - (33 25 37 36 ((((0 (output 1))) 33 36 CPG nil))
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((rect CMF 33 25 37 36) (move (symbol-call 2) 33 36)))

The item states that a metal wire (NM in NMOS) 4 lambda wide and 11 lambda high

along with a poly-cut (NMOS contact) (identified by a call to its position on the

-L5-symbol-list (symbol-call 2)), placed at the end of the wire is constructed. The poly-

cut is identified for connection by a bus tip. The output tip is identified as (output I)

where 1 is the unit#. Figure 3.6 illustrates the topology of the output extension as

defined by the above item. The poly bus line is not part of the extension.

POLY

data bus

METAL DIFFUSION

\\\\\\\\\\\\\xlxl

rr
VDD OUT

JIN

'IN
ORGANELLE

ri GND

poly contact

OUTPUT
EXTENSION

Figure 3.6 Output-Extension.

b. Lower Extension

The lower extension applies to the MSB of the unit. If the bit-slice of a

unit has a drive, test, or control line, a wire is extended from the bottom edge of the

MSB of the unit. A metal ground wire from the MSB organelle is connected to the

ground rail of the skeleton. The drive, test or control lines are extended in polysilicon

wire for connection to the control section via the river router. For the HYBRID nand

circuit there are no drive, test or control-lines requiring extension, simply the ground

wire is extended. The execution of the lower-extension function returns an item of the

following form:

lower-extension item <- (7 -10 11 nil nil (rect CMS -10 11 0))
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The ground wire is 4 lambda wide and 10 lambda high. That is, a 10 lambda extension

is made from the organelle to the ground rail on the skeleton frame. Figure 3.7

illustrates the topological layout of the lower extension.
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Figure 3.7 Lower Extension.

c. Upper Extension

The {layout-upper-extension) function extends power, and ground lines

through the length of the unit and connects these wires to the skeleton. The LSB bit-

slice unit has its Vdd connected to the Vdd rail of the skeleton. The remaining

organelles are connected together along the vertically running Vdd and gnd wires. Any

values that require daisy-chaining through the word-length of a unit have their

locations in the daisy attribute of the gen-form, A daisy line can be a clock, carry-out,

or some other output that is propagated through the unit. The locations of the Vdd,

gnd and daisy terminals is found by querying the gen-form. The layout of these
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connections is returned in the form of an item. For example, in the HYBRID nand

circuit:

upper extension item < - (16 25 20 44 nil nil (rect CMF 16 25 20 44))

Figure 3.8 illustrates the topology of the upper-extension. A metal wire 4 lambda wide

by 19 lambda high is generated from the Vdd point at the top of the LSB organelle to

the skeleton power rail.
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Figure 3.8 Upper Extension.
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3. Layout Gen-Form

The {layout-gen-form) function merges the organelle along with its extension

(stretch) lines and returns the resultant item called organelle-part to the (layout-

organelle) function.

E. PORTS

Data is communicated between the datapath and the external world through

ports. Ports are parallel buses of wires of the same width as the largest organelle in the

unit-list. There are three types of ports: input, output and internal. Pins are dedicated

to these I/O ports. The maximum number of pads available on a MacPitts chip is set

at 64. If a port is defined with a pad number greater than 64 an error occurs. This

restriction in the code can be easily removed in the {process- < pin-name > -definition)

functions in the source program prepass.l

1. Port-Input

Input ports are created by the {layout-mpx) function. If inputs to a unit-type

come from more than one source, a multiplexer is used at the input of an organelle to

allow selection of which input to pass to the organelle. Simple inputs are passed from

the bus along a single metal wire to the organelle. A river generated diffusion wire

cormects the metal wire to the inputs of the organelle Port-input is not a separate unit

but is generated in the mpx-part of the unit structure. The mpx-part for unit#l of the

HYBRID nand circuit is

unit#l mpx <- (((port-input a)(port-input b)))

The mpx specification consists of two operands, {port-input a) and {port-input b). Four

types of mpx-part configurations are available {mpxO mpxl mpx2 mpxS). The {layout-

mpx) function determines the number of constant-bits in the mpx specification. A

constant specification is of the form {constant number). The {get-constant-bits-from-

mpx) function recursively processes the multiplexer argument

argument < - ((port-input a)(port-input b))

The {get-constant-bits-from-argument argument bits) determines if a constant operand is

in the multiplexer specification. If no constant is found in the specification a value of (

) is returned. The {layout-mpx) function determines if the constant-bits equal ( () ())

1 ( I

(t 0) I
(t t). If the constant-bits are null as in the case of the HYBRID nand

circuit specification, the {layout-mpxO) is invoked. A 4 lambda wide metal wire is

generated along the input edge of the organelle with an extra reach of 6 lambda. An
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NMOS poly-cut is placed on top of the wire for connection to the bus wires. An

NMOS difT-cut is placed on the bottom of the \\ire. The river router will route a

diffusion wire from this diff-cut to the inputs of the organelle. This is repeated for the

second input wire to the organelle. Figure 3.9 shows a topological layout of the inputs

to the organelle.
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Figure 3.9 Port Input Topological Layout.

River routing between the mpx-part and organelle-part is accomplished by

determining the output terminal points on the mpx and the input terminals on the

organelle. The output points on the multiplexer are placed in a list called left-bank,

and the input points on the organelle are placed in a list called right-bank. The (river)

function is then invoked. Table 9 lists the code that produces the river routed wiring

between the multiplexer and the organelle. Figure 3.10 shows the stipple plot of the

wiring crossing the channel. A 2 lambda wide diffusion (NMOS ND) wire crosses the
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channel from the input wires to the two inputs of the organelle. An item is returned

containing the layout of the port-input.

TABLE 9

CODING FOR THE RIVER ROUTER

(let ((left-bank (get-output-connections-for-mpx (mpx-of
unit) #bifs))

;The input locations of the organelle are found by querying
;the gen-form of the organelle.

(right-bank (call-list gen-form (cons 'inputs tail))))

;The river router is invoked by the river function.

(river-part (river 'ND 2 left-bank rigiht-bank))
(river layer width stretch lelt right).
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Figure 3.10 Stipple Plot of a River Connection.
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2. Port Output

The second unit in the HYBRID nand circuit datapath specification is a port-

output.

unit#2 < - (port-output c (internal))

A port-output in NMOS is simply a diff-cut with a metal wire extension.

The same extensions are applied to the port-output structure as to an organelle

or register. The information to properly space the port-output is contained in its gen-

form located in the source program data-path.l. The port-output output terminal is

extended to connect with the internal bus lines. That is, the {layout-output-connection)

function stretches a metal wire with an NiMOS poly-cut on top to connect to the bus

wire. There are no power, ground or control connections to the port-output. The port-

output mpx specification is found by the (mpx-of unit-list) function

unit#2 mpx < - (internal 1)

where the bus# of the mpx is 1. The (layout-mpxO) invokes the (layout-singleton-

operand-list) function. A 4 lambda wide metal wire is generated along the input edge of

the port-output with an extra reach of 6 lambda. An NMOS poly-cut is placed at the

end of the wire and marked with a tip for connection to the bus. An NMOS diff-cut is

placed on the bottom of the wire for connection to the input of the port-output by the

river router. The topological layout of the port-output unit is shown in Figure 3.11.

3. Port-Internal

Port-internal follows the same architecture as the port-output. It consists of a

diffusion contact whose input is taken from the mpx-part. A specification for an

internal port if of the form

(port-internal sequencer- < name > -next-state -2

(((constant l))((constant 0))))

The value -2 is the organelle bus number. The mpx-part specification is

mpx ::= (((constant l))((constant 0))))

The constant-bits (10) invoke the function {layout-mpx2) which generates a multiplexer

with two input control lines and one output line that is fed to a register cell's input.

The organelle-part of the port-internal unit is a port-output cell. A multiplexer is

hierarchically constructed from sub-gate elements called odd-operand and even-operand.

An even operand is a transistor with two contacts, a diff and poly cut. An odd

operand is a transistor with one contact, a diff cut. Figure 3.12 shows a stipple plot of

the odd and even operand NMOS structures. These structures allow the construction

54



www.manaraa.com

internal bus D
P^^^^^

data bus out
X P»'a

Imetal

cut

diffusion poly

poly cut

diff c-S

y difjrcut

port-output

J I

mpH-part riuer-part organelle-part

Figure 3.11 Port-Output Unit.

of 2:1, 3:1 and N:l multiplexers, that are gated by one or more control lines. If the

values in the multiplexer specification are constants, these values are hard wired into

the inputs of the multiplexer. If the specification contains an (internal bus#) form, the

multiplexer takes its input from the local data bus . The value of the bus# matches the

organelle's bus number and indicates the source of the signal. Figure 3.12 also shows a

topological layout of a 2:1 multiplexer.

F. DATA-PATH LAYOUT

The (layout-organelle) function merges the multiplexer {mpx-part) the organelle

(organelle-part) and the channel {river-part) and places them side by side. The resultant

item is returned to the {layout-organelle-list). This function recursively processes each

subsequent bit of the unit, stacking the bits in the vertical direction. The [layout-unit-

iist) function recursively processes the next unit until all units have been transformed

into one item. The resultant item is passed to the {layout-data-path) function. The
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Figure 3.12 Topological Layout of an NMOS 2:1 Multiplexer.

buses are generated at this level by the {layout-buses) function. The buses are merged

with the item returned by the {layout-unit-list) function. The resultant item is the data-

path-layout that is passed back to the top-level function in frame.l {layout-object). The

data-path-layout becomes a single item that is then placed relative to the control, flags,

and routing channel. The item gives the bounding box on the data-path, its terminal

points along the edges, and its internal layout. The points facilitate connection to the

control unit via the river router along the bottom of the datapath box. On the left edge

of the datapath are the terminal points for connection with the wires routed from the

pads. The routing is performed by a net extraction in the {layout object) function in

frames. I. The datapath has no connections on the top or right edge.

G. SUMMARY
The layout of a simple nand organelle and port-output were covered in detail with

references to the code generating the layout. From these simple building blocks, an
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understanding of the layout of complex units such as sequencers and their inter-

relationships with the rest of the datapath can be understood. From this example, it

can be seen that the datapath specification in the object file can be directly mapped

into a layout of the datapath. The final step in the design process is to convert the L5

geometric layout of the datapath into GIF form. This is accomplished by the L5

function [cifout item file title). The argument item is defined in code as the output of

the {layout-data-path) function.

(setq layout (layout-data-path data-path power required-width definitions)

The function {layout-data-path ...) returns a list in item form:

data-path item < -
(
-14 80 54 (((( (input 1 1 2))) 51 NP nil) &)

To create a GIF file invoke the command (cifout item file title):

(cifout layout 'data-path.l ''Hybrid-nand-circuit")

This function will return a GIF file of the form data-path. l.cif. The GIF file can then

be plotted using the cifplot command.

The final chip layout is produced by the function {layout object) and converted

from item form to GIF form by the L5 function {cifout). A plot of the chip is

generated by the cifplot command on the UNIX command line:

cifplot -s .005 -1 bbox -P /work/malagon/CIF/pattems -b "Hybrid Nand Circuit"

nand.cif &

A stipple plot of the chip generated by the nand.mac program listed at the beginning of

the chapter and contained in the nand.cif file is shown in Figure 3.13.

Figure 3.14 shows a windowed stipple plot of the NMOS and SGMOS nand cells

in the datapath. The SGMOS layout is slightly larger than the corresponding NMOS
layout. The SGMOS organelle is a denser layout as compared to the simpler NMOS
organelle. The width of the SGMOS datapath is stretched, that is, the mpx-part is

positioned farther away from the organelle than in the NMOS circuit. The spacing is a

function of the length of the organelle which is longer than its NMOS counterpart.
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Figure 3.13 MacPitts Generated Hybrid Nand Circuit.
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Figure 3.14 Datapath containing SCMOS Organelle.
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IV. SCMOS DATA-PATH

A. SOURCE PROGRAMS CONTAINING ORGANELLES

The data-path layout generator {layout-data-path) references the organelle library

to determine the layout (organelles.!) and the characteristics (library) of each primitive

operator. The top-level arguments to the organelle data structure (Ucontrol-lines,

i^parameters §testlines results!) identify the number of inputs an organelle has, the

type output and the presence of test or control signals to provide results to the control

unit. For reference, recall that the organelle data structure is of the form: organelle

<name> ficontrol-lines ^parameters fitestlines resultl (gen-form) (sim-form)). Table 10

lists the top-level arguments of the basic organelles contained in the MacPitts library.

TABLE 10

ORGANELLE I/O REQUIREMENTS>

organe lie fcontrol

-

1 ines #paiameters #tes 1 1 i nes result?

not 1 yes
nand 2 yes
nor 2 yes
or 2 yes
xor 2 yes
equ 2 yes
= 2 no

<> 1 no
1* 1 yes
1- 1 yes

2 yes
Ish 1 rsh 1 1 yes
Ish-zero

| 1 yes
rsh- zero

The ^parameters field identifies the number of inputs to the organelle. The 'yes'

in the field results'! indicates the cells that provide outputs to the data-path. The 'no'

in the field results! indicates the cells that provide boolean outputs to control. The

fields, i^testlines and ^control-lines indicate the hooks to the organelle that allow

passing of signals between the data-path and the control section.
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The basic two-input logic units (nand, nor, or, and, xor, equ ...) provide full word

output used by the data-path. Arithmetic organelles such as an adder and subtracter

provide both function and test outputs. The overflow (carry-out) output of the adder

organelle is a test signal that is used by control. Test units such as the equality ( = )

and not equal ( < > ) organelles provide a boolean result to the control unit to

implement primitive conditions used in the cond construct. Their outputs are not

propagated directly to the data-path For this reason, the field results! has a value of

'no' assigned to it for the equality cell. Shift functions are also organelles ( < < 2 < <

3<< 4<< >> 2>> 3>>4>> 8>>) whose attributes are contained in the

library function {query-handler-for-shiftl -organelle). The shift functions ((< < is left

shift one bit and > > is right shift one bit) have a control-line for enable.

The goal is to compile the same design in NMOS and HYBRID technologies to

verify placement and routing of the newly inserted SCMOS organelles in the

framework of an NMOS chip. To accompUsh this, the lower level code generation

routines of the MacPitts compiler were altered. Specifically, organelles. 1 was modified

to support the layout of the SCMOS organelles. The program data-path. 1 was modified

to support the layout of the SCMOS registers. The superbuffers in general. 1 were

modified to support the layout of SCMOS superbuffers. The contacts in L5.1 were

modified to support the layout of SCMOS contacts [Ref 3.] The bus circuitry requires

modification from the NMOS metal and poly wiring scheme to the dual metal wiring

available in SCMOS technology.

An architectural change to the MacPitts floorplan was implemented. The third

phase clock and its associated wiring was removed. To accomplish this change,

modifications to the higher-level programs extract. I and general. I. were made.

Extract. I. performs the data-path extraction and optimization. To completely remove

references to three phase clocking in the datapath, the clock driver, a built-in organelle

that is hard-coded for three-phase clocking, required redesign to a two-phase clock in

SCMOS technology. It is important to note that although the object file may be

technology independent, the layout generation routines are architecturally dependent,

meaning, removal of a specified component of the chip at the top-level does not

completely eliminate a layout of its supporting wiring. Removing the specification for

a third clock did not remove the three-phase wiring clock wiring in the skeleton. At

present, therefore, architectural assumptions are hard-coded into the layout.
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B. MODIFICATION OF AN ORGANELLE

The methodology' for insertion of an organelle, is illustrated in the step by step

insertion of the SCMOS two input ripple adder. The SCMOS adder was designed on

the Magic layout editor and stored in a file, adder, mag. The adder.mag file is

converted into the universal layout language CIF by executing the following commands

from the c-shell environment:

Magic -d NULL

:Ioad adder

:cif write adder

The CIF file, adder.cif must then be converted to an L5 file, adder.L5. L5 is the

layout language inherent to MacPitts. The conversion process requires entry into the

LISP environment which is identified with the prompt -> symbol. The UNIX

environment is identified with a % symbol.

The LISP environment is invoked by typing %Iisp or %macpitts. However, a

unique feature of LISP is the ability to dump the user's functions into the LISP

environment and retain them for permanent use. The macpitts executable file is simply

a LISP environment that includes all the functions in the MacPitts source programs.

To create such an environment the user enters the lisp environment {%lisp), loads the

source programs(-> (include <filename>) ), executes the LISP command (->

{dumplisp <filename > )). The MacPitts executable file is called macpitts and is created

by the command - > {dumplisp macpitts).

To transform the CIF file to an L5 file, the conversion routine cifdef.l in the

Appendix, is included in the macpitts environment and the conversion function cifsave

is executed.

%macpitts

— > (include cifdef.l)

" > (cifsave 'adder)

Reading symbol 1

The cifsave function reads in the CIF file symbol by symbol, transforms the box

geometrical description of the cell design into rectangular coordinates, and precedes the

list with a header of the form (defsymbol <name> nil ....). Table 11 shows an

example of a CIF file and the resultant L5 file after conversion.
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TABLE 11

GIF TO 15 CODE

DS 1 1 2;

9 nand2;

L CWP;

B 4200 7800 -5700 300;

B 3000 600 -5700 -3900;

L CMS;
B 1200 11100 -5700 -150;

B 1200 11100 -3000 -150;

L CMF;
B 2700 1200 -2250 4200;

B 1200 1200 -7800 1500;

B 3300 900 -4650 2250;

B 1200 300 -5700 1650;

B 2400 6600 -1500 -600;
94 GND! -5700 -5400 CMS;
94 Vdd! -3000 -5400 CMS;
94 OUT! 300 -300 CMF;
94 INI! -7800 1500;
94 IN2! -7800 -900;
DF
C ]I;

(defsymbol nand2
ni I

(merge (rect 'CWP -31 -14 -14 16)
(rect 'CWP -28 -16 -16 -14)
(rect 'CMS -25 -22 -20 21)
(rect 'CMS -14 -22 -9 21)
(rect 'CMF -14 14 -3 19)
(rect 'CMF -33 3 -28 8)

(rect 'CSP -10 -15 -1 10)
(mark 'GND! -22 -21 'CMS nil)
(mark 'Vdd! -12 -21 'CMS nil)
(mark 'OUT! 1 -1 'CMF nil)
(mark 'INI! -31 6 'CPG nil)
(mark 'IN2! -31 -3 'CPG nil)))
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It replaces the box form of CIF as identified by the letter 'B' with the rectangular

form identified by the word 'rect'. The transformation requires the parenthesized

notation common to LISP. Each rectangle is parenthesized and the list of rectangles is

merged into one item by the L5 function merge. The name of the CIF cell and the

merged list of rectangular code is prefaced by the L5 function defsymbol and enclosed

in a parenthesized list of the form {defsymbol < name> < arguments> < code> ).

The defsymbol form allows the SCMOS organelle description to be manipulated

within the layout-generation routines for sizing and connection information. The

defsymbol is a macro that, when evaluated creates a symbol-number for the organelle.

The symbol-number is used to call the organelle to form a hierarchical layout of a chip.

The fully expanded geometry of the organelle is then reconverted into CIF code by the

defsymbol macro and placed on the -L5-symbol-file.

An alternate symbol creating device is currently being considered wherein the

CIF code is read directly for connection points and evaluated for sizing information

without doing the direct conversion from CIF to L5 back to CIF. This concept is of

great importance not only from the memory and time savings involved but also in the

insertion of the SCMOS pads. The SCMOS pads located on the

/vlsi/berkSS/lib/magic/scmos directory on the Naval Postgraduate School Vax 11/785

are quite large. The I/O pads take up to 940 lines of CIF code. To recursively process

such a large file in LISP results in a namestack overflow condition. A new construct to

remove the CIF to L5 conversion process would help tremendously in achieving a

SCMOS silicon compiler of high efficiency.

1. Insertion of a SCMOS Adder Organelle

The example file, adder. L5, is output to the directory from which the macpitts

environment is invoked. Two methods are available for insertion into the MacPitts

source code of the L5 file. The first requires actual entry into the source code,

recompilation of that code and then execution of the code to test the results of changes

made to the source code. The second method does not hard code changes into the

source code. Rather, the user enters the 'macpitts' environment and includes a file

containing the modified code in that environment. LISP executes the latest version of a

function. This method avoids hard coding changes and produces quick results. This

method allows a preliminary look at changes prior to actually including them in the

working version of MacPitts.
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To hard-code changes into the MacPitts source code, the L5 file is appended

to the source program organelles. I by typing on the UNIX command line cat adder. L5

> > organelles. I. The NMOS version of the organelle is commented out by the LISP

command (comment). The organelle function contained in the library calls for the

layout of an organelle when it receives the command to 'instantiate' that function. The

code is

((eq info 'instantiate) (layout- < name > -organelle))

The inserted SCMOS organelle is in defsymbol form. A cell definition is created which

calls the actual geometrical layout of the organelle. The cell definition is:

(defun layout- + organelle (drive ratio bit)

(cond(( = bit) (adderbitO))

(t (adderbitn))))

where adderbitO identifies the bitO adder organelle and adderbitn identifies bit >

adder organelles. The difference between the two organelles is that carry-in on bitO is

removed. The n bit adder propagates the carry-out signal to the next bit's carr>'-in.

The source program organelles. I is then recompiled using the make facility in UNIX.

On the UNIX command line, the command make organelles. o > org.stat & is executed.

The new organelles. o is loaded at run time during the execution of a macpitts program

The second method of changing the MacPitts source code is to create a file

that contains the new and/ or changed code and include this file into the macpitts

environment. For example, the file adder. L5 and its calling function

(layout- + organelle) are placed in a file called, for example, patches.adder.l that is

included into macpitts by the command -> (include patches.adder.l). An input

program is written to test the generation of the adder organelle as implemented in a

MacPitts chip. The program is executed while in the macpitts environment in the

following manner:

% macpitts

- > (include patches.adder.L5)

- > (macpitts adder)

where the filename adder is the name of the input program, i.e. adder.mac. The

outputs of the execution are object and CIF files named adder.cif and adder. obj.

2. Organelle Library Changes

There are two types of organelles found throughout the MacPitts source code:

functionally defined organelles and built-in organelles. Functionally defined organelles
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are organelles whose names are used in the input program (.mac). These organelles are

defined in the library file. The library file is loaded at run time along with the input

program. Functions used in the input program {word-not, word-and, word-nand, word-

nor, = + - 7+ /- ) are defined by the organelle fiinction in the library. In essence,

using the + symbol in an input program is akin to saying (layout- + organelle). The +

symbol is a shortened form and the call to the instantiation of the adder function is

contained in the organelle function in the library. Built-in functions are implied in the

program code by the use of the process construct to imply registers, or declaration of

ports in the definitions section of the input program (port output) (port-internal).

Before an input program, < filename > .mac, is executed to test code changes, an

organelle data structure is created and placed in the library. The built-in organelles

{register, driver, port-output...) are not contained in the library. The information on

sizing and connectivity are located in the layout parent source programs, data-path. I.

The adder function, identified in the input program as + , is an organelle. The

4- organelle function in the library must first be modified. The SCMOS adder organelle

is larger with terminal points in locations that are different from the original NMOS
organelle. The values of the length, width and terminal positions for the SCMOS

organelle are listed in this function, Table 12.

The dimensions of the adder organelle are determined from a plot of the cell.

To plot the cell, invoke the plot function in plot.l while in the macpitts environment.

- > (plot item file scale microns/lambda)

The plot function will change directories to the tmp directory located one level above

the vlsi directory. The function to change directories is located in edit. I and should be

loaded along with plot.l in the macpitts environment.

% macpitts

- > (include plot.l)

- > (include edit.l)

- > (plot (layout- + organelle '{4 4) 0) 'adder .02 2.5)

The plot command values correspond to the following code:

(plot (layout- + organelle drive ratio bit) 'title scale 2.5microns/lambda).

The plot command will return the following information:

Changed directories to /tmp

Please wait while making CIF file

[1] 8863

- > Window -2250 4000 -8500 2750
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TABLE 12

ADDER LIBRARY FUNCTION

(lambda (info bit word-length drive ratio)
(cond

((eq info 'instantiate)
;;first-quadrant positions the adder organelle so its bottom left

;;corner is at (0 U). If the organelles inputs are not on the left

;;edge than use rotccw. rotccw, mirrorx, mirror>' to position.
(first-quadrant (layout- + organelle drive ratio bit)

;;Dimensions and locations of terminals in lambda units.
((eq info 'width) 112)
((eq info 'length) 82)

;;inputs are along the left edge or the v-axis
((eq info 'inputs) '(90 98))

;;power and ground and output terminals are along the x-axis

[eq info 'output-typej '(ratio))

[eq info 'conductivity) (quotient 1 0.5556)
[(eq info #transistors) ^09 9))

;;carry-out of a bit slice adder is daisy chained along the y-axis
;;to the carry-in of the next bit slice. The MSB has a testline
;;hook to control

((eq info 'test) '(2))

f(eq info 'daisyVYi))
;;drive is not used in the SCMOS" organelles. NMOS organelles used
;;when their output signals were routed to I/O or tri-state pads.

((eq info 'drive ) ))

1 micron is 0.0666667 inches (1693x)

The plot will be 0.35 feet

The dimension and locations of the terminal points of the organelle are measured

manually for each organelle. The location of a terminal point is measured to the

centerline of the wire at that point. The dimensions and connection points of the

organelle are determined by measuring along the x and y axis of the plot and

converting the result to lambda values. Figure 4.1 illustrates the conversion process.

An input program to test a n-bit adder organelle is written as in Table 13 and executed

as described above in the macpitts environment.

Leaving the macpitts environment and returning to the UNIX environment a

plot of the chip is made using the cifplot command. To plot dual layers, the file

patterns located in /worklmalagon/CIF is passed to the cifplot command. The cifplot

command

cifplot -P /work/malagon/CIF/patterns -1 bbox -s .005 -b "adder'' adder.cif

produces a stipple plot on the versatec plotter.
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Figure 4.1 SCMOS Adderbitl Terminal Locations.

Cifplot is invoked by typing

cifplot {options} < filename > .cif

The option -P pattern-file allows the specification of user defined layers and stipple

patterns. The option -/ bbox suppresses the bounding box around a symbol. The -s

float option sets the scale of the plot. A MacPitts plot is normally plotted at a scale of

.005 inches per micron. The -b "text" option prints a title on the cifplot for

identification purposes. Figure 4.2 illustrates the resultant plot from the values passed

to the librar>' organelle function. Figure 4.3 shows a windowed plot of the adder cells.
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TABLE 13

MACPITTS INPUT PROGRAM FOR AN ADDER CHIP

(program adder 4
;The word-length of this circuit is 4 bits.

;Declaration oT ground/power/clock/input/output
•and signal pads.

(def 1 ground)
(def a port input (2 3 4 5))
(def b port input (6 7 8 9))
(def result port output (10 11 12 13))
(def c signal input 14)
(def earn' jport internal)
(def 15 pnia)
(def 16 phib)
(def 17 power)

;The following code is akin to a subroutine.
;The compiler refers to this section of code
;as the component-list.

(always
(cond (c (setq carry I))

;If a control signal is high then the internal port or bus is

;is set high i.e. to the value 1.

(f (setq carry 0)))

;Else, the internal bus called carry remains low.

(setq result ( + a ( + b carry )))))

;The value in the carry bus line is added to the value on the
;input bus line called port b. The result is added to the value
;on the bus line called port a. The sum or output from the
;second adder is placed on the port-output bus line.

A misalignment of the output wires of adderbitO and adderbitn is observed from the

plot. A quick translation of the adderbitn output wire on the Magic layout system is

needed to fix this misalignment. To check for proper alignments, the adder organelle is

windowed by using the option -w xmin xmax ymin ymax in the cifplot command line.

The length and width of the organelle form the bounding box on that

organelle to which wires are connected. Measurements are taken along the x and y axis

and the terminals are measure to the centerlines of their stubs. If the value of the

length is greater than the actual length of the cell, the next unit will be placed further

to the right of the organelle creating wasted space. If a value for width is inserted into

the gen-form of an organelle that is greater than the actual width of the organelle, then

the wiring does not connect to the pins of the organelle. If the length or width entered

into the organelles gen-form is a smaller value than the measured value the wiring will

overlap into the organelle.

69



www.manaraa.com

Scalet I micron Is 0.003 Inches (76x)

clfplot* Win'owt \60000 1S8000
adder

^AJO

PHi-a

,iii;,".iM.Mn..'.iii.ln..liiMiJ

Figure 4.2 MacPitts generated SCMOS Adder Chip.

To orient the SCMOS cells for proper connections to the surrounding bus

wiring, the L5 primitives: mirrorx, mirrory, roicw, roiccw are available to flip or rotate

the organelle. The bounding box of the adder organelle has its inputs taken from the

lelt side, its carry-out from the bottom, its output from the top right side, vdd from the

top and gnd from the bottom. The SCMOS designs must extend the I/O terminals to

the edges of the cell for proper connection.
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Figure 4.3 Windowed Plot of 2-bit wide SCMOS Adder Datapath.
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C. SCMOS CELL LIBRARY ATTRIBUTES

A powerful attribute of SCMOS is provided by a second metal layer. This gives a

greater degree of freedom in distributing global and local power ground, data and

control buses in a system. First metal is the primary routing layer and will be used

whenever possible.

The MuUarky SCMOS cell library designs utilize second metal for internal cell

wiring and first metal for I/O terminals on the organelle. External clock, power and

ground connections use second metal layers. These layers run the full length of the

organelle permitting the daisy chaining of power and ground wires between one-bit

slices in a unit. This information is important in determining the wiring layers for the

data buses, stretch connections from the organelles, and the power and ground buses

(skeleton) in the SCMOS technology. The internal power and ground buses, i.e., the

skeleton will also be run in metaU. Since the Vdd, gnd lines are run in metal2 their

connection to the the skeleton necessitates m2contacts at the LSB and MSB organelle

or register. The internal bus wiring, that is the wires tapping off of the horizontal data

buses may be in metal2 and connected m2contacts.

The structure of the SCMOS library cells does not vary as a function of drive, bit

position or word-length. Drive is built into each SCMOS organelle and separate

organelles exist for varying bit position. In comparison, the NMOS organelles are

parameterized. This allows an organelle's structure to vary with bit position and word-

length. The symbolic layout of the organelles produced less than optimum sized

organelles as compared to the highly optimized SCMOS organelles.

The SCMOS technology has two types of transistors, pfet and nfet. The total

number of transistors used in the chip is determined from the gen-form of the

organelles. This field will have to be changed to reflect the increase in total number of

transistors used in a SCMOS chip design.

D. ORGANELLES.L

1. Two Input Ripple Adder with Carr>'

The adder cell has three inputs, and two outputs: carry-out, and a sum

output. Carry is rippled through the adder and the overflow is passed to control via a

test-line In order to form an n-bit adder, n of these elements must be cascaded with

carry-out connecting to carry-in of the next bit-slice adder.

The input program that specifies an adder circuit was discussed in section B of

this chapter and is listed in Table 13. This program was executed to test the adder
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function. Two adders are specified in the program. The first adder adds the carry-in

signal to one of the input values. The sum is passed to a second adder and added to

the second input value. [Ref 4] The carry signal is passed from the control unit to the

input of the first adder via the unit called port-internal. The output of the first adder

is passed to the second adder and added to the second data input value. The output of

the second adder is the sum and is passed out of the data-path via a port-output unit.

The .mac program generates an object file that describes the data-path as having four

units: a port-internal to pass the carry-in signal to the first adder from control, the two

adder organelles, and a port-output. The object specification (.obj) of the adder data-

path is

data-path <- ((port-internal carry -1 (((constant 1)) ((constant 0))))

(organelle + -2 ((port-input b) (internal 1))))

(organelle + -3 (((port-input a) (internal 2))))

(port-output result (((internal 3)))))

The control specification supplies two signal-input wires to the multiplexer providing a

value of either or 1 to the input of the adder.

control < - (((mpx I 2) (nor ((primitive (signal-input c)))))

((mpx 1 1) (primitive (signal-input c))))

The topology of the resultant datapath is shown in Figure 4.4.

Negative values are assigned to the bus numbers of the individual units.

Positive values are assigned to the internal bus numbers. The internal bus numbers

indicate the unit from which it receives its signal. The (internal bus#) specification is

located in the unit that receives the signal from the corresponding organelle bus#. That

is, the specification (internal 1) indicates that the first adder organelle receives its input

from the port-internal unit whose bus# is the value -1. The adder circuit datapath has

four tracks: two input wires, one output wire and a fourth segmented wire yielding the

three internal wires connecting the units together. The SCMOS adder requires 30%

less area than the NMOS adder organelle in the MacPitts library. The computation

time to process this chip remained the same for both organelles. A stipple plot of the

SCMOS and NMOS adder chips plotted at a scale of .002 inches per micron is shown

in Figure 4.5.

2. Two input Equality (EQU and =) Cells

MacPitts contains four types of equality cells: word-equ, equ, = and eq..

Word-equ is a word-equality organelle that operates on integer inputs of the form
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F'igure 4.4 Topology of Adder Chip.

(word-equ integer integer) and returns the same result as (word-not (word-xor)) or the

xnor of two integer values to the datapath. Equ perforins the same logical function on

boolean inputs of the form (equ boolean boolean ...) and returns a boolean value of 1

if the arguments are the same. Ihc word-cquality-tcster organelle (
= ) of the form (

=

integer integer) determines the equality between two integer inputs and returns a

boolean value oft or f to the control unit, 'ihe comparison test function eq determines

equality between an integer and some constant in terms of bit positions. For example,

(eq in "a" (54321 0)), determines the equality between the value of 'in' and the ascii

encoding of the character 'a' in bit positions 5 4 3 2 10.

The SCMOS xnor cell available in the MuUarky Cell Library matches the

'equ' function. To be used as an = function the output of the xnor cell requires that

an 'and' cell be connected to its outputs to form a boolean result. Reference 5

discusses the use of a wired-or based NMOS equality ( = ) organelle that reduced the

size of the equality cell by 51% over the original MacPitts NMOS equality organelle

that used an and cell at its outputs. The single bit boolean form of the equality cell,

the = cell and the 'eq' organelle require designs in SCMOS technology for insertion

into MacPitts.

74



www.manaraa.com

Scale! 1 micron Is 0.1902 Inches (51x)

(a
m

(a
in

y
o

C

5
«

o

"1. ^^Si

^1^
t:

;
iii-

Scalei 1 m«cron Is 0.002 Inches (Six)

I

I

I

in

(r>

Vi3

IS)

IP
r^
en
in

o

c

«

o

uL

Figure 4.5 Comparison of NMOS and HYBRID Adder Circuits.
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The equality ( = ) cell requires a bitO and bitn cell. Since the = cell provides a

boolean value of true or false and passes this output to the control unit via a testline,

and does not provide the data-path with a result, an output extension is not required.

The 'test' info field of the equality's gen-form will need to be updated to the location of

the 'output' of the = equality cell.

An input program to produce an equality ( = ) cell is:

(program equality 4
(aef 1 ground)
(def 2 phia)
fdef 3 phib)
(def in porf input (4 5 6 7)
(def out signal output 8)
(def reset signal input 9)
(def 10 power)
(always (cond (( = in 5)(setq out t)))))

The layout resulting from this program is shown in the stipple plot of Figure 4.6. The

behavioral specification tests the value of the input signal for equality with the

constant 5. The input to the equality cell is a port passing the in signal and a hard-

wired input of the constant 5. The output is a signal passed to control via a testline.

The data-path specification produced by the compiler for the program is:

datapath < - ((organelle = (((port-input in)(constant5)))))

The control specification makes the testline that receives the boolean value of the

equality ( = ) cell.

control < - (((signal-output out)(primitive (test-line 1 1))))

E. DATA-PATH.L

1. Static D-Flip-Flop Memory Element (Register)

Memory elements are used in VlacPitts by control for next-state information

and for storing data. Registers used to hold state information are termed sequencers.

Three types of sequencers can be constructed based on the subroutine calls (go, call

and return) in the input program. The basic sequencer is simply a register that receives

next-state information from the control through a port-internal unit and returns state

information to the controller via a bit wire. A sequencer with a counter utilizes an

increment (1 + ) organelle and allows the controller to generate next-state information

only when the machine deviates from sequential program flow. The counter and stack

sequencer uses another register to temporarily store states. Figure 4.7 shows the

simple 'no-counter-no-stack' sequencer. Figure 4.8 shows the 'counter-no-stack'

sequencer and the 'counter-stack' sequencer in topological form.
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Figure 4.6 Mask Layout of a SCMOS Equality (EQU) Gate.

The register is a static memory cell, thus the storage element is not volatile

and does not need to be periodically refreshed. Next-state information is passed to the

register via a pon-intemal unit which is simply a multiplexer. To read the state of the

cell, a control line input to the register's own multiplexer is energized which is

coincident with PHI-B of the clock and the bit is read onto the control bus via a bit

unit composed of a wire. Figure 4.9 illustrates the feedback in a register path

implementing a synchronous finite state machine.

a. Bit Unit

The (layout-bit) function generates a metal wire along the word-length of

the register. The output read from the register is passed to control via this metal wire.

Bit returns a boolean value to control The bit layer is easily changed to first metal in

SCMOS. A bit is described by its gen-form in terms of length, width and input. The

argument bits-needed is passed to the {layout-bit) function.

A bit-Ust of (0) produces a single wire that runs through the word-length of

the register unit. The bitO register value is passed to control. A bit-list of (1 0) produces

a bit unit consisting of two wires onto which the contents of the bit I and bitO registers
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are passed to passed to control. Figure 4.10 illustrates the bit unit for a bit-list 01(1

0). The number of bits in a bit-list determines the number of wires instantiated.

The instantiation of the bit unit involves the generation of a metal wire

with a dilf cut at its input. A mpx-part wire is generated that taps off of the bus

carrying the output signal of of the register and passes it to the bit wire via a dilfusion

wire.

b. Register Unit

The mask layouts of the SCMOS two phase D flip-flop register cell and the NMOS
register cell are shown in Figure 4.11. In comparison to the NMOS register the

SCMOS register is considerably larger. Three phase clocking allows a compact layout

of the NMOS register but requires an extra pin in the package and extra wiring to

accommodate the third phase. The two-phase clock implemented in the SCMOS

register resulted in a larger design. Removal of the extra pin and associated wiring had

little effect on overall area reduction in the current fixed frame topology. Ihe

significance of removing the third phase clock pad will be seen when pads can be

placed on all four sides of the chip. The impact will be pronounced when the SCMOS

pads are inserted into MacPitts. Figure 4.12 shows the MacPitts layout of a 4-bit

SCMOS register. The cell's output connection does not extend to the edge of its
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bounding box causing the output extension not to butt up to the register. A quick

extension on the original circuit in Magic would alleviate the problem. Figure 4.13

illustrates a windowed view of the register, the clock driver and the associated two-

phase clock wiring on the skeleton.

The insertion of the SCMOS register results in a wider data-path than for

an NMOS MacPitts circuit. The SCMOS register stretches the data-path in the

vertical direction and shrinks it in the horizontal direction. The width of the datapath is

determined by the number of bits in the data word. The length of the datapath and

flags block grow as the number of datapath operations increase. Since the datapath

and flags blocks grow in the length-wise direction, there is considerable savings using

this SCMOS register in the length-wise reduction of the data-path for complex VLSI

circuits. It is noted that the SCMOS register is the largest cell in the datapath. The

datapath scales all extensions and wiring to the dimensions of the largest element in the

datapath.

To test the insertion of the register, a behavioral specification was written

utilizing the process construct. The program in Table 14 lists the behavioral

specification of an equality chip with a finite state machine to store state information.
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The resultant object specification is

data-path <- ((organelle = (((port-input in)(constant 1))))

(register sequencer-equality-state -1 (((constant 0)) ((internal 2))))

(port- internal sequencer-equality-next-state -2 (((constant ))))

(bit (0) (((internal 1)))))

Figure 4.14 shows the topological layout of the data-path from the specification given

in the object file.

c. Two Phase Clock Drivers

The SCMOS version of MacPitts will use a two-phase clocked scheme. To

accomplish this, the third phase pad PHl-C and its associated wiring was removed.
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Figure 4.11 Comparison of an NMOS and SCiMOS MacPitts Register.
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Figure 4.12 Hybrid Circuit with SCMOS Register.
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Figure 4.13 Windowed SCMOS Register, NMOS Clock Driver and Mux.
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TABLE 14

MACPITTS INPUT PROGRAM FOR A REGISTER

(program reg 4
(aef 1 ground)
(def 2 phia)
(def 3 phib)
(def in port input (4 5 6 7))
(def out signal output 8)
(def reset signal input 9)
(def 10 po>\er)
(process equality

;(process <name> < stack-depth

>

;< label >
first

(cond ((= in 5) (seta put t) (go first))

(t (go lirsf)) )))

constant 1 constant

port in ij. ki
internal bjs 2

(internal bus 1)

mux

register

-1

t
testline

port

nternal

mux

-2

' U i

control-lines

;

bit

(wires)

constant
control line

Figure 4.14 Topology of an Equality Circuit with State Register.

Within the data-path, the register and the clock drivers required conversion to a two

phase SCMOS design. The SCMOS register has been inserted into MacPitts. The need

exists to design a SCMOS two phase clock driver. The outputs of the driver must be

pitch-matched to the clock lines on the register for correct abutment. Figure 4.15
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shows the NMOS three-phase clock, driver. The driver is composed of input logic for

gating by the control unit, driver superbufTer and output lines. The NMOS superbuffcr

is also shown. The (layout-driver) function in the source program data-path.l

instantiates the clock, driver.

clfplot* window: 13000 -23200 Scale: 1 micron Is 0.02 Inches
clock-dr Iver -power- 1 1 1 ambda

PH I -A GATED
BY CONTROL

DRI VER-SUPERBUFFER INPUT LIMES

TO REGISTER

Figure 4.15 Mask Layout of NMOS Clock Driver.

2. Multiplexer

Multiplexers are fundamental to the data-path architecture. In a design

specification where the predicates are simple Boolean values (true/false) these signals

would be distributed via control commanding the multiplexer to connect the organelles

and registers to the correct buses.

The modification of MacPitts to a microprogrammed controller requires a

multiplexer specification that represents the new control type. A two input SCMOS

multiplexer is available in the Mullarky Cell library (Figure 4.16), but was not inserted
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into MacPitts. MacPitts hierarchically constructs a 2:1 or 3:1 or n:l multiplexer from

sub-gate units depending on the design specification. The Mullarky 2:1 SCMOS

multiplexer was not designed to fit into the MacPitts topology. The NMOS multiplexer

takes its input and select lines on the bottom and top of the cell. The SCMOS

multiplexer should be re-designed to take its inputs from top or bottom sides to fit into

the existing routing scheme.

'.1' ^r ' '^ V.—^'^

srsss

Figure 4.16 SCMOS 2:1 Multiplexer.

The inputs to a multiplexer are specified by the datapath object specification.

The control lines to the multiplexer are specified in the control section of the object

file. For example, the data-path specification of a 4-bit port-internal unit constructed

of a multiplexer is:

(port-internal sequencer-light-controller-next-state -2

(((constant 0)) ((constant 1)) ((constant 2)) ((constant 3))))
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which would translate into the hard-wiring of four constant inputs to a 4:1 multiplexer.

The multiplexer is integral to the data-path architecture and requires careful

consideration in the SCMOS version of MacPitts.

F. FRAME.L

The source program frame.l contains the layout functions for the wing and

skeleton. A portion of the code in the function {layout-skeleton) was modified to allow

a two-phase clocking scheme.

1. Two-Phase Clocking

The clocked circuits considered in MacPitts are based on a three-phase non-

overlapping clock signal. A non-overlapping two-phase clock is considered [Ref 2] and

implemented in the design of a SCMOS two-phase master-slave D flip-flop. To utilize

this register, the third clock and its supporting wiring were removed.

To remove the specification of a phic clock in the compiler, the datapath and

control extraction function {extract-component-list) was changed. This function

specified the making of the three-phase clock. The lookup function in the program

general.l, {lookup-phic-pin#) looks up the phic pin# in the input program. This function

was removed along with the {make-pin {lookup-phic-pinj^ definitions){make-phic-pacf))

line of code in the {extract-component-list) function in extract.l. The clock wires run

the channel between the data-path and control module. The {layout-skeleton) function

generates three clock wires horizontally through the length of the internal-layout. To

remove the phic clock wire, the layout geometry of that wire in the function {layout-

skeleton) was removed. A slight, but relatively insignificant, reduction in chip area was

achieved using a simple circuit design. The removal of a pad, however, promises

significant savings with the insertion of the very large SCMOS pads. The reduction in

the number of clock wires to be routed did not significantly affect computation time.

G. GENERAL.L

The layout information on the NMOS superbuffers and the river router are

contained in the source program genera.l.

1. SuperBuffers

The four types of NMOS superbuffers (inverting/noninverting and inverting-

pair/non-inverting-pair) are located in general.l. The SCMOS library contains a Ix and

4x drive non-inverting bufier. The Ix driven non-inverting buffer replaces the NMOS
non-inverting buffer. The 4x driven non-inverting buffer replaces the NMOS non-
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inverting-pair-super-bufTer. SCMOS inverting buffers may use the SCMOS inverters.

as a buffer.

2. River Router

The river router function (river) is defined in general.l The allowable NMOS
layers for river routing are metal, diffusion and polysilicon. SCMOS layers added were

metal 1 and metal2, diffusion and polysilicon. The present river router routes polysilicon

wires between the control and data-path units and routes diffusion wiring between the

multiplexers and organelles in the data-path.

H. LAYER CONVERSION

Conversion of the NMOS layers in data-path.l and frame.l to SCMOS layers

requires consideration of new routing schemes using the dual metal capabiUty of

SCMOS technology. A one for one exchange of SCMOS layers for NMOS layers

resulted in the power and ground rail attachments to the skeleton being pushed into

the power and ground pads, and so further modification is necessary.

I. SUMMARY
The results of the numerous modifications and insertions of SCMOS cells are

illustrated in the taxi meter chip generated by the MacPitts program in Table 15.

Figure 4.17 illustrates the change in the overall size and growth changes in the

datapath from NMOS technology to SCMOS technology.

An expanded topological layout of the taxi data-path is given in Figure 4.18 The

object file data-path specification given in Table 16, is mapped directly into the data-

path along with its buses. The only NMOS organelles left in the SCMOS taxi chip are

the incrementer and multiplexers. The ports are easily converted to SCMOS layers and

SCMOS contacts. The ports are subject to revision when a better routing scheme is

implemented.

It can be seen that the SCMOS version has grown considerably in width but is

shorter in length. The SCMOS organelle designs are short in length and tall in height.

The NMOS organelle designs were long in length and short in height.

Several one bit cells were also processed into MacPitts chips. The logical cells

maintained approximately the same chip size and computation time as their NMOS
counterparts. The significant changes in area occurred with the adder and register. The

adder decreased the length of the chip significantly while the register increased the
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TABLE 15

TAXI METER INPUT PROGRAM

(p^ '9'-am taxi 8

(def 17 power)
(def 1 ground)
(def 2 phia)

(def 3 phib)
(def 4 phic)
(def timer register)
(def fare register)
(def reset signal input 5)
(def time-on signal input 6)

(def h i re si gna 1 i nput 7)

(def mile-mark signal input 8)

(def display port tri-state (9 10 11 12 13 14 15 16))
(def charge-time signal internal)
(def maximum-time constant 100)
(def base-fare constant 20)
(def cost-per-mi le constant 50)
(def cost-per-time constant 10)

(process time-clock
off

(cond (time-on (setq timer 0) (go on))
(t (go off)))

on
(cond (time-on (cond ((= timer maximum-time)

(setq timer 0)

(signal charge-time))
(t (setq timer (1+ timer))))

(go on))

(t (setq timer 0) (go off))))
(process fare-clock
for -hi re

(cond (hire (setq fare base-fare) (go hired))
(t (go for-hire)))

h i red
(par (cond ((not hire) (go for-hire))

((and charge-time mile-mark)
(setq fare ( (+ fare cost-per-mi le) cost-per--time))
(go hired))

(charge-time
(setq fare ( fare cost-per-time))
(go hired))

(mi le-mark
(setq fare ( fare cost-per-mi le))

(go hired))
(t (go hired)))

(setq display fare))))
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TABLE 16

TAXI CHIP DATAPATH SPECIFICATION

((register sequencer-time-clock-state -1 (((constant ))) ((internal 2))))
(port-internal sequencer-time-clock-next-state -2 (((constantl)J

((constant 0)))).
:bit (0) (((internalT))))
[register timer -3 (((constant 0)) ((internal 4))))
^organelle = (((internal 3) (constant 100))))
organelle 1+ -4 (((internal 3))))
[register sequencer-fare-clock-state -5 (((constant 0))

((internal 6))))
(port-internal sequencer-fare-clock-next-state 6 (((constant 1))

((constant On)}
(bit (0) (a internal 5))))
(register tare -7 (((constant 20)) ((internal 9)) ((internal 8})))
(organelle + -8 (((internal 7)) ((constant 50)) ((internal 7)

(constant 10))))
(organelle + 9 (((internal 8) (constant 10))))
(port-output display (((internal 7)))))

width of the chip considerably. The taxi chip shows the reduction in length and

increase in width. Table 17 summarizes the SCMOS cells currently available in the

MuUarky SCMOS Cell Library along with the cells used by MacPitts and their

corresponding library functions. The basic SCMOS combinational logic cells, an

adder, and a static storage master-slave flip flop (register) have been installed in

MacPitts. The cells remaining to be designed are flagged with a star *. These include

an incrementer, decrementer, subtractor and comparator < >
,
< > 0, = and = 0. The

xnor cell requires a wired-and output to be useful as an = test comparator.

The boolean functions also require SCMOS designs. Boolean type objects are

implemented in the control and flags blocks. Unlike the integer types that are stored in

registers or loaded onto ports, boolean types are stored in flags or propagated as

signals. Boolean forms have a true or false result. The supported Boolean functions

include logic cells, shift cells and comparison cells {noi, nor,and, or equ, xor, parity,

< <
,

> > ,
=

, =0, <>0, <0, < =0, >0, > = 0, unsigned- < , unsigned- < =
,

unsigned- > , and parity).

The data-path has an internal set of organelles that are not called directly by the

input program. The 'process' construct implies the use of a register to store state. In

addition, the definitions statements in the input program contain I/O ports that involve

construction of input, output and internal port structures. The bit form is simply a wire

that is useful for extracting fields of data words. Bit returns a Boolean value of true or
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false. Data selectors or multiplexers are generated by control. The control section is

under modification to a microprogrammed controller necessitating a multiplexer design

to fit this controller's specification. [Ref 3]

While the non-inverting buffer was replaced by the SCMOS buffer Ix the

inverting buffer has not yet been replaced. The enlarged two-phase register and the

reduced size of the adder provide the largest changes in dimensions. The remainder of

the organelles remain closer in sizing and computer processing time. Finally, the

SCMOS contacts were designed by J. Harmon and are available on the ISI graphics

editor.
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TABLE 17

SCMOS CELLS AND MACPITTS REQUIREMENTS

SCMOS CELL MACPITTS ORGANELLE LIBRARY FUNCTION
LIBRARY LIBRARY

xor2 layout-xor-organej le word-xor
and2 layout-and-organel le word-and
nand2 layout-nand-organel le word-nand
nor2 layout-nor-organel le word--nor

or2 layout-or-organel le word--or

i nvlx

1

i nv4x| i nv8x layout-i nverter-organel le not
adder layout-+organel le

* layout-=organel le =

xnor2 layout-equ-organel le

layout-l+-organel le

layout-1-organel le

layout-substract-organel le

layout-Oorganel le

layout-OOorganel le

layout-=Oorganel le

1 sh-zero/ 1 sh2/ 1 sh3/ 1 sh4/ 1 shB
rsh-zero/rsh2/rsh3/rsh4/rsh8

Boolean Organel les | Functi<

not 1 nand | nor | and |

word-

1 +

1-

O
OO
=0

«
»

-equ

Jllo — — — -

or 1 xor 1 equ

|]o^a_Po4'n flr^oonAI 1 oc ^w^^«*»<~ ~ ""^'~~~~^^*^"*^ L/aV/d — rabll Uigdilcl 1 tJo — — — — — — .

df f Iphase
dff2phase layout-registerl

* 1 ayout-dr i verl
* dr i V er- super -buf fer

mux2-l (not used) 1 ayout-odd-operand
* 1 ayout-even-operand
* port-outputl
* bit

buf ferlx
vjcncrai ur Goii^i i co — — — — — — — —

layout-non-i nverti ng-super-b uffer
buf ferlx-4)<

* layout- invert! ng-super-buf fer

1 "N ^^r^T^^TC ^^^^^^^^^mmmm^^^^

*

i_o coni/dci>3 — — — — — _—__ —

—

m2c 1 pc 1 ndc | pdc | nsc | psc
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V. AREAS FOR FURTHER DEVELOPMENT

A. SUGGESTED CHANGES TO SOURCE PROGRAMS
Several additions and improvements are needed to modify the MacPitts silicon

compiler. Chapter IV singles out the additional SCMOS cells to make the library

complete. Mentioned here are areas where modification and new research can

contribute to the implementation of an efficient MacPitts silicon compiler. Since

changes to the compiler involve code changes, each source program is reviewed for

changes accomplished and proposed changes to be implemented.

1. LincoIn.I

The source program lincoln.l is akin to a writer's dictionary of user defmed

functions that extend the basic LISP primitives available in the Franz Lisp

environment. This tool forms the basis of the MacPitts source programs. Before any

other program will run, this file must first be loaded. The documentation of lincoln.l is

contained in [Ref 1.] This program contains the cfasl routine to convert the program c-

routinesx into LISP code for use with the MacPitts interpreter. A problem arose with

this section of the program with multiple definitions of the C functions in c-routines.c.

This problem was resolved by removal of a twice defined variable in Franz Lisp called

ospeed. Reference 3 discusses the installation of MacPitts in more detail. MacPitts was

written in the early 1980's, and Franz Lisp has now incorporated many of the functions

that are contained in lincoln.l in its symbol table. At some future date, implementing

the more efficient Franz Lisp primitives that correspond to functions defined in

lincoln.l in the MacPitts code will eliminate many calls to functions and speed up

processing time.

2. L5.1

The source program, L5.1, is the heart of the layout language used throughout

the MacPitts layout routines. It is akin to a technology file, in that it maintains global

technology variables such as type technology (NMOS, SCMOS, CMOS-PW ...), sets

feature sizes (200/250 centimicrons-per-lambda for NMOS processes), and defines the

Ust of allowed-layers for each type of technology: ((NMOS: ND NM NP ...) (SCMOS:

CAA CPG CMF CMS ...)).
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The changes made at this level were discussed in Chapter III. A global switch

to select NMOS, SCMOS or HYBRID technology was implemented. [Ref. 3] The

NMOS contacts or vias are contained in this file. SCMOS contacts were added to this

file. [Ref 3.] The conversion routines are also maintained in L5, that is, the conversion

from an item to a CIF output. In the LBS version, L5 contains an interface routine

to CAESAR.

Much like the CIF layout language which calls other symbols to build a

circuit, L5 contains a symbol call that is implemented by a Lisp macro defsymbol. A

prime feature of L5 is that it defines layouts in terms of rectangular geometry. This

choice of rectangular geometry for MacPitts layout code is influenced by the

availability of the CAESAR layout editor which also uses rectangular geometry. An

interface routine is available in the LBS source file L5.1. A change to Magic as the

layout editor of choice for SCMOS designs shifted the priority to box geometry

descriptions. The insertion into MacPitts of Magic produced SCMOS designs

necessitated a conversion from box (CIF) to rectangular (L5) geometry. For small

scale SCMOS organelles, the conversion was not a problem. But for real life designs

such as the SCMOS pads, the conversion proved unfeasible. The use of recursion in

LISP to process CIF files of up to 940 lines of code caused a namestack overflow

condition. Furthermore, the conversion of a defsymbol to an item creates a load on the

system's computation time. The attributes that need to be passed to the item defstruct

are the dimensions of the organelle [left bottom right top) and labels (points) identifying

its terminals. A program to extract this information from the CIF file while leaving the

file in CIF form saves in overhead and produces a compiler capable of handling large

sub-structures such as the pads. This aids the ability to design more complex chips in

shorter time, and makes it possible to place pads on four sides of the chip rather than

three. A data structure to perform this extraction is described in Reference 3.

3. Defstructs.l

The source program defstructs.l contains the data structures used throughout

the MacPitts source code. The defstructs listed in this program parallel the circuit

symbols necessary to build a chip. The defstruct object provides the framework of the

.obj file. The definition defstruct provides the translation of the input (.mac) program

into the object (.obj) file specification. Defstructs provide the database that allow for

^The Lincoln Boolean Synthesizer (LBS) is a CMOS based silicon compiler using

the same layout tools that MacPitts uses. It is documented in [Ref 1] for combinatorial

logic.
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the creation, selection, mutation and interrogation of constructs that have a

corresponding hardware implementation. To understand how MacPitts organizes the

specification and layout of a module, or portion of a module, the root and children

nodes of the defstructs pertaining to that module or sub-element need only to be

traced.

The MacPitts NMOS controller uses a Weinberger array. The SCMOS version

of MacPitts wU use a microprogrammed controller that requires its own defstructs to

specify its construction. A familiarity with how the Weinberger array is specified and

an understanding of the coding of the Weinberger array in the source program control.!

will facilitate the coding of the SCMOS microprogrammed controller.

The data-path related defstructs were discussed in Chapter 3. The purpose was

to develop a methodology for tracing through the specification and layout language to

determine the layout scheme of MacPitts The same methodology can be applied to the

other structural components that form a MacPitts circuit. For example, the layout of

the pins, nets, buses, fiags and sub-components such as the sequencers and

multiplexers can be understood by tracing the coding that generates them. From this

understanding, modifications can be easily applied. Thus, a thorough understanding of

the source code in lincoln.l, L5.1 and defstructs.! is required before modification to

MacPitts should be attempted.

4. Library

The Backus Naur Format (BNF) grammer can be used to define the syntax of

the MacPitts design language. The compiler converts the input syntax to an object file

using the definition defstruct in defstruct.l. Four specific cases of the definition defstruct

are loaded at run time in their expanded form. These constructs are organelle, function,

test and macro. They are predefined in the Hbrary and are loaded at run times into the

macpitts environment. For example, the design language functionally defines the

arithmetic/logic grammer. That is, a BNF <form> can be a {<function-name

>

[ <form> ]*) like {word-nand a b) or a. test form ( < test-name> [ <form> ]*) as in ( = in

5). The library contains the functional definition of word-nand in the (function)

construct. The language form, word-nand, is passed to the organeUe data structure, via

the function construct in the Hbrary as nand. The organeUe function in the library

contains a call to the actual layout of the nand organeUe contained in the source

program organeHes.l. The actual layout function is defined as {layout-nand-organelle).

The test function is also an interface between the design language and the actual
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implementation of the organelle. The syntax = is passed to the test function which

then passes it to the organelle function =
. The organelle function interfaces the syntax

to the actual layout. The call to the layout in the organelle data structure is of the form

{layout- = organelle).

New organelles can be easily added to the library by placing the geometric

description of the organelle in the source program organelles. I and functionally defining

the organelle in a function or test form. An organelle data structure is also created by

the program.

5. Organelles.!

The layout geometries of the organelles are contained in organelles. I. The

SCMOS conversion of this library is incomplete. Cells need to be designed to replace

the NMOS incrementer (I + ), decrementer (I-), subtracter, =, < >, < > 0, and =0

and shift organelles. Unlike the arithmetic/logic cells whose layout information is

contained in the gen-form field of the organelle data structure in the file library, the

shift organelles has both its layout and genform functions located in organelles. 1. The

arguments to the shift genform are {info bit word-length direction distance fill drive

ratio). Direction can be right or left. Distance is either 1, 2, 3, 4 or 8 shifts as required.

Fill is either control or zero. These arguments are passed by the organelle data-structure

in the library to a function in organelles. 1 called {query-handler-for-shift 1 -organelle). A

SCMOS shift design is required along with an understanding of the hierarchical

construction and call of the NMOS shift organelle currently in the library.

6. Data-Path.l

The data-path consists of horizontal buses and an array of units. The units

utilize built-in organelles contained in this program. The three-phase NMOS register

defined in the function {layout-register) has been replaced by the SCMOS two-phase

register. The remaining NMOS built-in organelles: port-output, bit, driver, driver-

superbuffer require implementation in SCMOS. The driver in particular must be aligned

to the register's clock, lines. The bit wire is a simple change to the SCMOS layers CMF
or CMS in the {layout-bit) function. The {layout-port-output 1) function requires the

change from the NMOS diff-cut contact to a SCMOS m2contact.

The NMOS multiplexer is hierarchically constructed from basic N-channel

transistors in data-path.l. If the mpx specification in the object file contains several

operands of the form {constant number), a multiplexer is generated at the inputs of the

organelle or register. If one or no constant operands is specified, single metal wires are
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generated at the inputs of the organelle. The multiplexer is specified by the

requirements of the controller. Since an SCMOS microprogrammed controller is

replacing the NMOS Weinberger array, the primitives required to construct a

multiplexer to meet the needs of the controller specification are specified in Reference 3

The organelles are stretched to meet the power, ground and bus lines. These

extensions, as well as the bus lines, require routing in the SCMOS dual metal layers.

The buses are routed in first metal by changing the layers in the (layout-buses) function

in MacPitts. The code that generates the layout of the buses and the segmentation and

compaction algorithm require documentation.

7, Frame.l

The top-level layout function (layout object) is contained in this file. The

coordination of the entire chip layout is performed by this single function. It generates

the river routed polysilicon wires from control to the data-path and flags blocks. It lays

the metal skeleton that distributes power and ground to the internal layout. It

generates the I/O wiring called wing from the control to the edges of the internal layout

for connection to the pads. This wiring is generated by the wing layout routines.

The basic floorplan generated by this function is a box A\ithin a box type of

plan. The pins are placed on three sides with a ground and power ring connecting them

to the internal layout. The internal-layout is positioned in the center of the chip. The

area between the pins and the internal layout is called the ring. The wiring nets are

located in this ring channel which connects the pads located on the top, right and

bottom sides of the chip to the terminal points located only on the left edge of the

internal-layout. The dimensions of the chip are fixed in the top and right sides and

grows on the bottom and left sides. The problem with this scheme is that the largest

module in the internal-layout determines the size of the invisible box around which a

channel is formed for routing of wires from the pads. The insertion of the SCMOS

two-phase registers extended the width of the circuit and shortened the length of the

circuit. However, if the pads extend beyond the length of the internal layout, the

channel is formed around an invisible box whose dimensions are determined by the the

longest element in the x and y direction. The pads or the internal layout determine the

box dimensions. The number of pads along these edges can create a larger length than

the length of the data-path causing unused silicon space. The problem of routing the

nets becomes a problem of placement.
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An important modification to the floorplan is the placement of the pads on

four sides of the chip. A modification to the function {pins-dimensions) to place pads on

four sides resulted in a reduction of chip size of a simple circuit by 30%. The

algorithm specified in the (pins-dimensions) function determines the maximum-Hpins-

horizontally by dividing the length of the internal-layout A or intended-right location by

the pad-class-width. For a 2.5 micron per lambda NMOS feature size, the pad width is

100 lambda and height is 82 lambda. The 2.0 micron per lambda NMOS feature size

has a pad width of 128 lambda and a height of 112 lambda. As lambda shrinks pads

become relatively larger. The SCMOS pads have a width of 198 lambda and a height of

425 lambda. This will have a significant impact on the chip size and placement routine.

In light of the larger pads, the need for the placement of pads on all sides is evident.

The {place-pin) function determines the number of pins per side by finding the

highest pin number and dividing it by the value 3. The function {pins-dimensions)

determines the top, right, bottom and left dimensions of the chip. The pins are oriented

around the three sides of the chip by the {place-pins) function. The functions {extend-

right), {extend-top) {pins-dimensions) and {side-extension) contain the variable 3 which

limits the placement of the pads to three sides of the chip. This value was altered to 4

to attempt to place the pins on four sides.

The {place-pins) function is capable of placing the pins on four sides of the

chip. The algorithm that limits the pins to three sides is contained in the function

{pins-dimensions). This function determines the number of pads per side as designated

by ffpins-per-side variable in the code. The pin specification in the object file is read

and the highest numbered pad is set to the variable x. The variable y is set to the value

of 3. The function {/up) takes the quotient x / y and applies the lisp function /?x to the

result. The Franz Lisp primitive fix returns a fixed number as close as possible to the

number and rounds down. For example a chip with 13 pads and y = 3 would yield the

value 4. This value multiplied by 3 yields 12 which is not equal to 13. Therefore, the

value of 4 is incremented to the value 5. The ifpins-per-side is assigned the value of 5.

The {place-pins) function contains an algorithm for pad placement. If the pad

number referred to as the variable p/>7# is less than the variable jfpins-per-side, i.e., less

than or equal to the value 5, the pads are placed on top aligned to the left edge of the

internal layout at x = 0. If the variable pinfj^ is between the value 5 and two times the

#pins-per-side, i.e., 10, the pads are placed on the right aligned to the bottom edge, at y

= 0, of the internal-layout and stacked vertically. If the variable /?/«# is between the

101



www.manaraa.com

value 10 and three times the #pins-per-side, i.e., 15, the pads are placed on the bottom

aligned to the left edge of the internal layout at x = 0. If the variable /?/«# is greater

than the value 15 and less than four times the §pins-per-side, the pads are placed on

the left edge of the chip aligned to the bottom of the internal layout at x = 0. A

division by the value 3 in the function {pins-dimensions) ensures that pads are never

placed on the left edge of the circuit. A division by the value 4 will allow pad

placement on all four sides. To illustrate, for a circuit with thirteen pads, the variable

j^pins-per-side is 4, allowing four pins on top, four pads on the side, four pads on the

bottom and one pad on the left edge. The problem at this point is a problem of wiring

the pads to the internal layout.

Placing pads on four sides will require changing the net list that routes the

wires from the pads to the internal layout on the left side. The extraction of the signal

netlist is done by the (extract-nets) routine contained in frame.l. Points at the left edge

of the internal layout and at the pads are assigned any of the following attributes:

inside, outside, top, bottom, left, right, first,and last which are used by the net functions

to route the ring of wiring around the internal-layout,

8. General.l

This program contains the river routing algorithm that is used to route poly

wires between the control and data-path/flags module. It is also used to route short

diffusion layers between a multiplexer and an organelle. The SCMOS layers, diffusion

(CAA), polysilicon (CPG) and metall and metal2 (CMF, CMS) were added to the river

router. The choice of routing layers using the dual metal capability of SCMOS

technology should be applied to the wiring generated by the router.

9. Extract.l

The data-path and control extraction as well as the sequencer, pins, flag, and

definitions extraction are done in this program. The PHI-C pin was removed from the

function {extract-component-list). The control extraction process requires further

modification in order to replace the extracted specification to match the SCMOS

microprogrammed controller.

10. Prepass.I

The highest level procedure (macpitts-compiler) located in the source program

prepass.l, accepts the input program to be compiled and returns a list representing the

hardware parameters to be implemented in the form of an object file. It also returns a

geometric description of the layout in the form of a .cif file The subsidiary procedure
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(get-object) in prepass.l, accepts an argument list to be compiled and returns a list

representing an object. The object is passed to the procedure {layout object) in frame. 1,

which then returns a list in L5 item format. The list or item is passed to the function

{cifout) in the program L5.1, and converted to a CIF file. The compiler function sets the

allowable minimum-feature-size. This option was expanded to accept a 3 micron

feature size. Interface routines to the Magic layout editor were incorporated at this

level [Ref 3].

11. Control and Order.l

Order.l performs optimization functions in the ordering of the control unit's

nor gates and the ordering of the units in the data-path. The optimization of the

control and datapath internal order requires documentation. These programs are

discussed in [Ref 3].

12. Pads.I

The internal-layout forms the framework around which the pins and net

wiring are formed. The {layout-power-ring) and {layout-ground-ring) functions in frame.

1

include vertical wire extension to the intended-top location of the internal-layout. The

ground and power pads contain the side on which they are located as an attribute, i.e.,

top, right, bottom, left.

The NMOS pad library contains pad definition functions that call the layout

geometry of the pads. The pad geometries are defined as defsymbols and the pad

definitions call the defsymbols. Marks are generated for wire connections and for

naming of the pads on the CIF outputs from the circuit. The input pad contains a

mark for an in-wire with the attributes 'ring side 'outside. It contains an external

attribute for the name of the cell to which it is to be connected. The output pad

contains the same marks, an out-wire and an external name. The I/O pad has a mark

for an in-wire, out-wire, drive-wide and an external for name. The clock pads are

marked for clock-wires and external designation. Ground and power pads are marked

for power and ground connection points and for external 'vdd and 'gnd. These same

pad-definitions must be inserted into the SCMOS pad definitions.

NMOS pads are contained in two files, rinout for a minimum feature size of 5

microns and padlOb, supporting a minimum feature size of 4 microns. These files are

large CIF files that are converted to defsymbol form by the program padgen.l. The

results of this conversion routine are loaded into the file pads. I.
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The change to SCMOS requires the insertion of SCMOS pads at 3 microns

minimum-feature size. The 2 micron NMOS pads measure 100 lambda on a side. As

lambda shrinks pads must become relatively larger, unless the technology for bonding

wires to pads improves as well. The pads are large to allow a thin wire to make contact

to them. In the case of the SCMOS pads available in the vlsi directory, the pads are

significantly larger than the NMOS pads. The SCMOS I/O pads take up to 940 lines of

CIF code. Converting this size program to defsymbol form caused a namestack overflow

condition. The routine that performs the conversion is recursive and cannot hold

enough information on a stack. The SCMOS Vdd and Gnd pads, which require less

storage, were converted to defsymbol form and inserted into the macpitts environment.

Incorrect scaling information caused the pads to overlap into the internal layout. The

correct height and width of the pad at 1.5 micron per lambda should correct the

overlapping problem.

The ground pad must be on the top side of the circuit and the power pad

cannot be on the top side of the circuit. The power pad is generally located on the

bottom side of the circuit. These definitions are contained in the {layout-ground-ring)

and {layout-power-ring) functions. The pads placed on the top side are the first third of

the total pads on the circuit and are identified by their pin numbers. Ground is usually

the first pin. This pad is mirrored around the x-axis. It is placed on the circuit by the

{place-pin) function and instantiated by the {layout-pad) function in frame. 1. The power

pad normally located on the bottom of the circuit is not translated in orientation. The

SCMOS power and ground pads were inserted into MacPitts. Their large size

overlapped will into the circuit due to inaccurate spacing information. The associated

wiring was not instantiated because the test case failed to insert marks to identify

hook-up points to the wiring.

The functions that were modified were the functions: {pad-class) , to allow a

3 micron minimum-feature-size, a {pad-class-default-power-bus-width) of 40 lambda for

SCMOS, a {pad-class-basic-height) of 425 lambda, a {pad-class-width) of 198 lambda,

and a {pad-basic-extension) of nil. As a quick test, the rinout power pad function was

used to place the SCMOS pad into the MacPitts generated circuit. This was done with

a pad cell definition of the form

(defun layout-rinout-ground-pad (power side)

(merge (PadVdd) (mark 'power 50 76 TMF (list side)

(mark 'vdd 50 53 'CMF (list 'external side))))
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and the insertion of the defsymbol containing the geometry of the power pad of the

form

(defs>'mboI PadVdd

nil

(merge (rect 'CWP 10 23 16 27) ))

were inserted into the macpitts environment. A MacPitts program was executed to test

the effect of these changes. The correct sizing information and correct position for

connection of the wiring extending from the pad requires continued work to allow the

insertion of SCMOS pads into MacPitts.

The power and ground pads are not marked for connection to the ring

network. Their wires connect directly to the internal layout frame. The frame is the

skeleton composed of the ground, power and clock distribution for the internal layout.

The {layout-ground-ring) and {layout-power-ring) functions in frame. 1 generate the

ground and power buses through the pads and include the vertical wire extensions from

the ground pad and power pad to the skeleton. The ground and power pad contain the

side on which they are located as an attribute. For example, the ground wire extension

originates from the location of the ground mark, coded as follows: {mark 'ground x y

layer {list side)) to the intended-top location of the internal-layout. The power extension

wire originates from the marked 'power' location on the edge of the power pad {mark

'power X y layer {list side)) to the lower edge of the internal-layout. This edge is the y

= line. The orientation of the cells is done by the {place-pin) function. If the pad is

placed on top, it is mirrorx. If the pad is placed on the right is it rotccw. If the pad is

placed on the bottom is is unchanged. If the pad is placed on the left edge it is mirrorx

and then rotccw.

Insertion of the SCMOS input, output and I/O pads is not easily done using

the defsymbol scheme. The number of lines of GIF code is too large for LISP to

handle. The defsymbol form causes the creation of an item out of the geometry of a

cell. The item generated contains the bounding box and points of the cell. The

geometry of the cell is then converted back into CIF and accessed by a symbol-

number. A routine is under development to extract the bounding box and points

information directly from the CIF code without having to do the conversion. The new

function is called CIFSYMBOL and is under development by J. Harmon. Until the

cifsymbol form is available the input, output and I/O pads cannot be inserted into

MacPitts. The cifsymbol is a significant change to the MacPitts compiler in that it
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reduces computation time by a large factor. This improvement facilitates large chip

designs in a reasonable amount of computer time.

13. Flags.l

Finally, the last remaining cells to be designed for SCMOS conversion are the

cells contained in the flags.l source program. A number of defsymbols are contained in

this program. They include bottom-out-clock and bottom-out which support the {layout-

flags) function. The SCMOS design of the flags-clock, flags-power, flags-top-row, 2nd-

row and 3rd-row is also required.

B. TECHNOLOGY INDEPENDENCE

The MacPitts prototype NMOS silicon compiler was heavily technology

dependent. This made porting new technology into MacPitts tedious and difficult. The

compiler should be written for technology independence. The fabrication technology

description should be read from a technology file at the start of execution of the

compiler. Programs would then access technology data exclusively through a data-

structure built from this file. The MacPitts software programs could then avoid "hard-

coding" technology layers allowing easy portability to new technologies. The L5

language acts as a technology file in the current version of MacPitts. The generic

layers should be added to this file, thus removing layers from the layout routines.

C. ROUTING AND PLACEMENT
The area inefficiencies of the "box-within-a-box" algorithm is magnified when it is

used with the SCMOS pads. The longest and widest element in the top level layout

determine the channel wiring rectangles around the internal layout. An optimized

internal-layout is overshadowed by the enlarged pads which add length and width to

the circuit leaving enormous gaps of empty silicon area between the internal layout and

the wiring or ring layout. A smarter placement algorithm requires investigation to

optimize the channel wiring scheme. The first step in placement improvement is placing

the pins on four sides. This will reduce the overall profile of the pads relative to the

internal layout. Connections between the pads and the internal layout are at present

only on the left edge of the internal layout. This causes the wiring on the left edge to

bunch up and creates long bus wiring inside to the internal layout. The design of the

organelles and registers is organized to fit into the array like placement of the units in

that their inputs are taken from the left and their outputs from the top of the cell. New

cell schemes are required and new optimization routines must be considered to place
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the units in such a manner that they can connect on the right edge of the internal

layout to the pads. This entails the overhaul of the bus layout routines, the net

extraction and layout routines and the optimization routines in the source program

order.L

The MacPitts datapath can be partitioned into several independent processes and

placed along with the flags block in an optimum arrangement relative to the control

unit to reduce the size of the internal layout. A placement algorithm that sizes each

block, and places them in such as way as to optimize silicon area requires the use of

artificial intelligence techniques such as best-fit or A* search routines. [Ref 6] The

datapath processes can be separated into mini-datapaths and placed relative to the

control unit. This would save in silicon area over the current horizontal abutment of

processes and the flags block. The fixed topology of the MacPitts generated datapath

is basic and leaves much room for the implementation of smarter placement and

routing schemes.
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VI. CONCLUSIONS

The goal of this thesis was to insert SCMOS arithmetic/logic and memory cells

into the MacPitts silicon compiler. Thus, the investigation serves as a case study on

the conversion of an NMOS system to a custom SCMOS system, and provides a

methodology for porting a new technology into the existing MacPitts compiler.

The addition of a SCMOS library is a small step toward the goal of a working

SCMOS silicon compiler. Organelles and registers are not isolated elements but are

part of a complete system that also must be designed with the capabilities of SCMOS

technology in mind. The conversion of designs to SCMOS technology is not a

straightforward procedure. Substantial alterations to the entire system architecture of

MacPitts is necessary to obtain an efficient implementation. Chapter 5 details many of

the changes required to the source code to accomplish an efficient SCMOS silicon

compiler.

MacPitts as a software system hitherto had scarce documentation to facilitate

alteration/modification to the source code to take advantage of rapidly changing

technologies and smarter algorithms. The reduction of theory to practice in silicon

compilation is paced by the availability of the necessary algorithms. It is taking time

for the full capabilities offered by silicon compilation theory to be converted into

practical and economical VLSI designs. The chief factor that makes silicon compilation

tools possible is the introduction of artificial intelligence search routines for intelligent

placement and routing. In Reference 7, two-layer channel routing algorithms are

presented in which wires may run on top of each other for short distances as long as

they are different layers. This would take advantage of SCMOS dual metal capability.

A restricted two-layer wiring is presented in Reference 8.

Alternative methods of experimenting with MacPitts can be accomplished by

taking the technology independent object file and entering portions of the specification

into alternate programs for processing. Reference 5 documents the results of entering

MacPitts technology independent specifications into another layout program. FAMOS

is a standard cell placement and routing program in use at GTE Laboratories for

layout of MOS integrated circuits. It places arbitrary sized cells in rows according to

the strength of their interconnections and wires them using Hightower's algorithm. The
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data-paths of the MacPitts chips were entered as cells in the FAMOS library, so that

the existing I/O points would be wired automatically by FAMOS. A computer program

was -w^Titten to convert the control-logic portion of the object file to FAMOS format.

The results of the two chip designs is documented in Reference 5

The general contribution of this thesis toward the goal of a SCMOS silicon

compiler is in exposing the MacPitts code and hopefully shortening the learning curve

necessary to enter MacPitts and make modifications. The basic algorithms for pad

placement and circuit layout were uncovered from the code. The 'box-within-a-box"

approach in laying out the top-level design coupled with the placement of pads on

three sides of the circuit is wasteful of silicon area especially in light of the significantly

larger SCMOS pads The next step in the conversion process is placing the pads on all

sides of the chip by exposing the wiring algorithms contained in the (extract-nets)

function in frame. 1. Making changes to a compiler without any documentation of its

inherent algorithms slows the process of conversion to take advantage of new

technologies, smarter algorithms for route and placement and new tools for program

optimization to reduce computation and memory requirements.

The next step in this process is completing the SCMOS cell library and inserting

it into MacPitts, inserting the microprogrammed controller, placing the pads on four

sides by exposing the net layout algorithm and modifying it, inserting the SCMOS

pads, scaling the SCMOS power bus by entering conductivity information of each

SCMOS cell in the library, implementing a bus scheme that optimizes the use of dual

metal wiring, and completing the wiring around the organelles' stretch connections to

SCMOS layers. Following these tasks, the consideration and implementation of

alternate placement algorithms and associated routing schemes can considerably reduce

waste of chip area and reduce chip size.

From this point on, the consideration of artificial intelligence techniques for

smarter algorithms and interactive generation of complex chip designs is limited only

by the amount of time it takes the user to absorb the documentation of MacPitts as it

now exists.
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APPENDIX
CIFDEF.L

This file is currently not checking the layer-table for allowable layers. This feature will

be added. When using this program the minimum-feature-size must be specified, by

the command -> (setq minimum-feature-size '300) Once this program is inserted into

L5.1 the minimum-feature-size is set globally. This file will not load into lisp on its

own, it requires lincoln.l be loaded initially.

include front-page.l

;;Data-type

(defstruct read-cif-symbol

(name program))

;;Command to convert a .cif file to a .L5 file

(defun cifsave (file)

;Converts an item from

;Cal Tech Intermediate Form (CIF) format to L5 code.

;E.g., (cifsave ' <file> ) where file is the file. cif without the .cif.

;The filename is quoted due to the lambda form.

;An nlambda form would not

•.require quoting.

(setq defsymbols (cif-in file))

(setq outport (outfile (concat file '.L5)))

(pp-form defsymbols outport)

(patom "OK ")

(close outport))

(declare (special piport))

(defun cif-in (filename)

;E.g., (cif-m ' < file> ) returns a list in the form

;(defsymbol <filename> nil (merge (rect 'CPG 1 2 3 4)( )))

;The filename is quoted.

;Each cif symbol in manhattan geometry is converted

;to rectangular geometry (L5 form).

(let (cif-file defsymbols)

(cond ((null? filename) (setq cif-file piport))

(t (setq cif-file (infile (concat filename '.ciO))))

t))?[H (t (setq cif-file (infile (concat filename '.cif)))))

(setq defsymbols (make-defsymboll

(cif-to-L5 cif-file () ())))

(close cif-file)
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defsymbols))

(defun make-defsymboH (defsymbol)

;The argument 'defsymbol' is a data

;list in the format described by the

;defstruct 'read-cif-symbol'.

;From defsymbol, each of the defstructs

;arguments can be retrieved.

;Recall, a short defstruct selector is of the

;form- (type-field(i) 'field).

;This defstruct has two fields, name and

iprogram. To retrieve that information,

;the following selectors apply-

;(read-cif-symbol-name defsymbol) returns the name of the file.

;(read-cif-symbol-program defsymbol)

;returns the rectangular coordinates

;of the converted cif file.

;The conversion is done by 'cif-to-L5' function.

^'(defsymbol ,(read-cif-symbol-name defsymbol) ()

,(cons 'merge (read-cif-s>'mbol-program defsymbol))))

(declare (unspecial piport))

(defun cif-to-L5 (cif-file defsymbols level)

;Parses the cif file and converts

;each line of coordinates

;which are in the bd ;(defun cif-to-L5 (cif-file defsymbols level)

; Parses the cif file

;and converts each line of coordinates which are in the

;manhattan geometry form

;(B length width xcenter ycenter) to rectangular

;geometry of the form (rect 'layer xl yl x2 y2). The results of this

;conversion is put into a Ust created by the

;read-cif-symbol defstruct.

.****«>vJOTE***** The Magic produced .cif files

;often are missing layers in

;the label (94) section of the .cif file.

;The default layer is polysilicon

;'CPG and is inserted wherever

;the .cif file has no layer in its '94'lists.

(setq command (read cif-file))

(cond ((null command)

(setq program (reverse defsymbols))

(make-read-cif-symbol name program))

((eq command 'DS)

(setq sjmbol-number (read cif-file))

(patom (concat "Reading in symbol " symbol-number))(terpr)

(setq scale-up (read cif-file))
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(setq scale-down (read cif-file))

(cif-to-L5 cif-file defsymbols level))

((eq command '9)

(setq name (read cif-file))

(cif-to-L5 cif-file defsymbols level))

((eq command 'L)

(cif-to-L5 cif-file defsymbols level))

(setq new-level (read cif-file))

(cif-to-L5 cif-file defsymbols new-level))

((eq command 'B)

(setq length (read cif-file))

(setq width (read cif-file))

(setq xcenter (read cif-file))

(setq ycenter (read cif-file))

(setq xl (centimicrons-to-lambdas (- xcenter (/ length 2))))

(setq yl (centimicrons-to-lambdas (- ycenter (/ width 2))))

(setq x2 (centimicrons-to-lambdas ( + xcenter (/ length 2))))

(setq y2 (centimicrons-to-lambdas ( + ycenter (/ width 2))))

(cif-to-L5 cif-file

(cons (Hst 'rect

(list 'quote level) xl yl x2 y2) defsymbols)

level))

((eq command '94)

(setq label (read cif-file))

(setq X (/ (read cif-file) minimum-feature- size))

(setq y (/ (read cif-file) minimum-feature-size))

(setq layer (ratom cif-file))

(cond ((eq layer '
)

(setq insert-layer 'CPG)

(cif-to-L5 cif-file )

(cons (list 'mark, (list 'quote label) x y
(list 'quote insert-layer) () ) defsymbols)

level ))

(t(cif-to-L5 cif-file

(cons (list 'mark (list 'quote label) x y
(list 'quote layer) () ) defsymbols)

level ))))

((eq command 'DF)

(cif-to-L5 cif-file defsymbols level))

((eq command 'C)

(read cif-file)

(cif-to-L5 cif-file defsymbols level))

((eq command 'End)

(cif-to-L5 cif-file defsymbols level))

(t (patom "Warning - Invalid CIF Command ")

(terpr) )))
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(defun centimicrons-to-lambdas (value) (/ value minimum-feature-size))?-H
(defun centimicrons-to-lambdas (value)

(/ value minimum-feature-size))
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